На закрепленной наклонной плоскости. Как работают наклонные плоскости? Задача на определение ускорения при движении по наклонной плоскости тела

Движение тела по наклонной плоскости - это классический пример движения тела под действием нескольких несонаправленных сил. Стандартный метод решения задач о такого рода движении состоит в разложении векторов всех сил по компонентам, направленным вдоль координатных осей. Такие компоненты являются линейно независимыми. Это позволяет записать второй закон Ньютона для компонент вдоль каждой оси отдельно. Таким образом второй закон Ньютона, представляющий собой векторное уравнение, превращается в систему из двух (трех для трехмерного случая) алгебраических уравнений.

Силы, действующие на брусок,
случай ускоренного движения вниз

Рассмотрим тело, которое соскальзывает вниз по наклонной плоскости. В этом случае на него действуют следующие силы:

  • Сила тяжести mg , направленная вертикально вниз;
  • Сила реакции опоры N , направленная перпендикулярно плоскости;
  • Сила трения скольжения F тр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела)

При решении задач, в которых фигурирует наклонная плоскость часто удобно ввести наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg , а вектора силы трения F тр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α ) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α ) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.
Сила трения скольжения F тр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: F тр = µmg cos(α ). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз , получаем выражения суммарной равнодействующей силы и ускорения:

F x = mg (sin(α ) – µ cos(α ));
a x = g (sin(α ) – µ cos(α )).

Не трудно видеть, что если µ < tg(α ), то выражение имеет положительный знак и мы имеем дело с равноускоренным движением вниз по наклонной плоскости. Если же µ > tg(α ), то ускорение будет иметь отрицательный знак и движение будет равнозамедленным. Такое движение возможно только в случае, если телу придана начальная скорость по направлению вниз по склону. В этом случае тело будет постепенно останавливаться. Если при условии µ > tg(α ) предмет изначально покоится, то он не будет начинать соскальзывать вниз. Здесь сила трения покоя будет полностью компенсировать «тянущую» компоненту силы тяжести.



Когда коэффициент трения в точности равен тангенсу угла наклона плоскости: µ = tg(α ), мы имеем дела с взаимной компенсацией всех трех сил. В этом случае, согласно первому закону Ньютона тело может либо покоиться, либо двигаться с постоянной скоростью (При этом равномерное движение возможно только вниз).

Силы, действующие на брусок,
скользящий по наклонной плоскости:
случай замедленного движения вверх

Однако, тело может и заезжать вверх по наклонной плоскости. Примером такого движения является движение хоккейной шайбы вверх по ледяной горке. Когда тело движется вверх, то и сила трения и «тянущая» компонента силы тяжести направлены вниз вдоль наклонной плоскости. В этом случае мы всегда имеем дело с равнозамедленным движением, поскольку суммарная сила направлена в противоположную скорости сторону. Выражение для ускорения для этой ситуации получается аналогичным образом и отличается только знаком. Итак для тела, скользящего вверх по наклонной плоскости , имеем.

Динамика и кинематика - это два важных раздела физики, которые изучают законы перемещения объектов в пространстве. Первый рассматривает действующие на тело силы, второй же занимается непосредственно характеристиками динамического процесса, не вникая в причины того, что его вызвало. Знание этих разделов физики необходимо применять для успешного решения задач на движение по наклонной плоскости. Рассмотрим этот вопрос в статье.

Основная формула динамики

Конечно же, речь идет о втором законе, который постулировал Исаак Ньютон в XVII веке, изучая механическое движение твердых тел. Запишем его в математической форме:

Действие внешней силы F¯ вызывает появление линейного ускорения a¯ у тела с массой m. Обе векторные величины (F¯ и a¯) направлены в одну и ту же сторону. Сила в формуле является результатом действия на тело всех сил, которые присутствуют в системе.

В случае движения вращения второй закон Ньютона записывается в виде:

Здесь M и I - и инерции, соответственно, α - угловое ускорение.

Формулы кинематики

Решение задач на движение по наклонной плоскости требует знания не только главной формулы динамики, но и соответствующих выражений кинематики. Они связывают в равенства ускорение, скорость и пройденный путь. Для равноускоренного (равнозамедленного) прямолинейного движения применяются следующие формулы:

S = v 0 *t ± a*t 2 /2

Здесь v 0 - значение начальной скорости тела, S - пройденный за время t путь вдоль прямолинейной траектории. Знак "+" следует поставить, если скорость тела увеличивается с течением времени. В противном случае (равнозамедленное движение) следует использовать в формулах знак "-". Это важный момент.

Если движение осуществляется по круговой траектории (вращение вокруг оси), тогда следует использовать такие формулы:

ω = ω 0 ± α*t;

θ = ω 0 *t ± α*t 2 /2

Здесь α и ω - и скорость, соответственно, θ - угол поворота вращающегося тела за время t.

Линейные и угловые характеристики друг с другом связаны формулами:

Здесь r - радиус вращения.

Движение по наклонной плоскости: силы

Под этим движением понимают перемещение некоторого объекта вдоль плоской поверхности, которая наклонена под определенным углом к горизонту. Примерами может служить соскальзывание бруска по доске или качение цилиндра по металлическому наклоненному листу.

Для определения характеристик рассматриваемого типа движения необходимо в первую очередь найти все силы, которые действуют на тело (брусок, цилиндр). Они могут быть разными. В общем случае это могут быть следующие силы:

  • тяжести;
  • реакции опоры;
  • и/или скольжения;
  • натяжение нити;
  • сила внешней тяги.

Первые три из них присутствуют всегда. Существование последних двух зависит от конкретной системы физических тел.

Чтобы решать задачи на перемещение по плоскости наклонной необходимо знать не только модули сил, но и их направления действия. В случае, если тело по плоскости скатывается, сила трения неизвестна. Однако она определяется из соответствующей системы уравнений движения.

Методика решения

Решения задач данного типа начинается с определения сил и их направлений действия. Для этого в первую очередь рассматривают силу тяжести. Ее следует разложить на два составляющих вектора. Один из них должен быть направлен вдоль поверхности наклонной плоскости, а второй должен быть ей перпендикулярен. Первая составляющая силы тяжести, в случае движения тела вниз, обеспечивает его линейное ускорение. Это происходит в любом случае. Вторая равна Все эти показатели могут иметь различные параметры.

Сила трения при движении по наклонной плоскости всегда направлена против перемещения тела. Если речь идет о скольжении, то вычисления довольно просты. Для этого следует использовать формулу:

Где N - реакция опоры, µ - коэффициент трения, не имеющий размерности.

Если в системе присутствуют только указанные три силы, тогда их результирующая вдоль наклонной плоскости будет равна:

F = m*g*sin(φ) - µ*m*g*cos(φ) = m*g*(sin(φ) - µ*cos(φ)) = m*a

Здесь φ - это угол наклона плоскости к горизонту.

Зная силу F, можно по закону Ньютона определить линейное ускорение a. Последнее, в свою очередь, используется для определения скорости движения по наклонной плоскости через известный промежуток времени и пройденного телом расстояния. Если вникнуть, то можно понять, что все не так уж и сложно.

В случае, когда тело скатывается по наклонной плоскости без проскальзывания, суммарная сила F будет равна:

F = m*g*sin(φ) - F r = m*a

Где F r - Она неизвестна. Когда тело катится, то сила тяжести не создает момента, поскольку приложена к оси вращения. В свою очередь, F r создает следующий момент:

Учитывая, что мы имеем два уравнения и две неизвестных (α и a связаны друг с другом), можно легко решить эту систему, а значит, и задачу.

Теперь рассмотрим, как использовать описанную методику при решении конкретных задач.

Задача на движение бруска по наклонной плоскости

Деревянный брусок находится в верхней части наклонной плоскости. Известно, что она имеет длину 1 метр и располагается под углом 45 o . Необходимо вычислить, за какое время брусок опустится по этой плоскости в результате скольжения. Коэффициент трения принять равным 0,4.

Записываем закон Ньютона для данной физической системы и вычисляем значение линейного ускорения:

m*g*(sin(φ) - µ*cos(φ)) = m*a =>

a = g*(sin(φ) - µ*cos(φ)) ≈ 4,162 м/с 2

Поскольку нам известно расстояние, которое должен пройти брусок, то можно записать следующую формулу для пути при равноускоренном движении без начальной скорости:

Откуда следует выразить время, и подставить известные значения:

t = √(2*S/a) = √(2*1/4,162) ≈ 0,7 с

Таким образом, время движения по наклонной плоскости бруска составит меньше секунды. Заметим, что полученный результат от массы тела не зависит.

Задача со скатывающимся по плоскости цилиндром

Цилиндр радиусом 20 см и массой 1 кг помещен на наклонную под углом 30 o плоскость. Следует вычислить его максимальную линейную скорость, которую он наберет при скатывании с плоскости, если ее длина составляет 1,5 метра.

Запишем соответствующие уравнения:

m*g*sin(φ) - F r = m*a;

F r *r = I*α = I*a/r

Момент инерции I цилиндра вычисляется по формуле:

Подставим это значение во вторую формулу, выразим из нее силу трения F r и заменим полученным выражением ее в первом уравнении, имеем:

F r *r = 1/2*m*r 2 *a/r = >

m*g*sin(φ) - 1/2*m*a = m*a =>

a = 2/3*g*sin(φ)

Мы получили, что линейное ускорение не зависит от радиуса и массы скатывающегося с плоскости тела.

Зная, что длина плоскости составляет 1,5 метра, найдем время движения тела:

Тогда максимальная скорость движения по наклонной плоскости цилиндра будет равна:

v = a*t = a*√(2*S/a) = √(2*S*a) = √(4/3*S*g*sin(φ))

Подставляем все известные из условия задачи величины в конечную формулу, получаем ответ: v ≈ 3,132 м/c.

В. М. Зражевский

ЛАБОРАТОРНАЯ РАБОТА №

СКАТЫВАНИЕ ТВЕРДОГО ТЕЛА С НАКЛОННОЙ ПЛОСКОСТИ

Цель работы: Проверка закона сохранения механической энергии при скатывании твердого тела с наклонной плоскости.

Оборудование: наклонная плоскость, электронный секундомер, цилиндры разной массы.

Теоретические сведения

Пусть цилиндр радиуса R и массой m скатывается с наклонной плоскости, образующей угол α с горизонтом (рис. 1). На цилиндр действуют три силы: сила тяжести P = mg , сила нормального давления плоскости на цилиндр N и сила трения цилиндра о плоскость F тр. , лежащая в этой плоскости.

Цилиндр участвует одновременно в двух видах движения: поступательном движении центра масс O и вращательном движении относительно оси, проходящей через центр масс.

Так как цилиндр во время движения остается на плоскости, то ускорение центра масс в направлении нормали к наклонной плоскости равно нулю, следовательно

P ∙cosα − N = 0. (1)

Уравнение динамики поступательного движения вдоль наклонной плоскости определяется силой трения F тр. и составляющей силы тяжести вдоль наклонной плоскости mg ∙sinα:

ma = mg ∙sinα − F тр. , (2)

где a – ускорение центра тяжести цилиндра вдоль наклонной плоскости.

Уравнение динамики вращательного движения относительно оси, проходящей через центр масс имеет вид

I ε = F тр. R , (3)

где I – момент инерции, ε – угловое ускорение. Момент силы тяжести и относительно этой оси равен нулю.

Уравнения (2) и (3) справедливы всегда, вне зависимости от того, движется цилиндр по плоскости со скольжением или без скольжения. Но из этих уравнений нельзя определить три неизвестные величины: F тр. , a и ε, необходимо еще одно дополнительное условие.

Если сила трения имеет достаточную величину, то качение цилиндра по наклонной происходит без скольжения. Тогда точки на окружности цилиндра должны проходить ту же длину пути, что и центр масс цилиндра. В этом случае линейное ускорение a и угловое ускорение ε связаны соотношением

a = R ε. (4)

Из уравнения (4) ε = a /R . После подстановки в (3) получаем

. (5)

Заменив в (2) F тр. на (5), получаем

. (6)

Из последнего соотношения определяем линейное ускорение

. (7)

Из уравнений (5) и (7) можно вычислить силу трения:

. (8)

Сила трения зависит от угла наклона α, силы тяжести P = mg и от отношения I /mR 2 . Без силы трения качения не будет.

При качении без скольжения играет роль сила трения покоя. Сила трения при качении, как и сила трения покоя, имеет максимальное значение, равное μN . Тогда условия для качения без скольжения будут выполняться в том случае, если

F тр. ≤ μN . (9)

Учитывая (1) и (8), получим

, (10)

или, окончательно

. (11)

В общем случае момент инерции однородных симметричных тел вращения относительно оси, проходящей через центр масс, можно записать как

I = kmR 2 , (12)

где k = 0,5 для сплошного цилиндра (диска); k = 1 для полого тонкостенного цилиндра (обруча); k = 0,4 для сплошного шара.

После подстановки (12) в (11) получаем окончательный критерий скатывания твердого тела с наклонной плоскости без проскальзывания:

. (13)

Поскольку при качении твердого тела по твердой поверхности сила трения качения мала, то полная механическая энергия скатывающегося тела постоянна. В начальный момент времени, когда тело находится в верхней точке наклонной плоскости на высоте h , его полная механическая энергия равна потенциальной:

W п = mgh = mgs ∙sinα, (14)

где s – путь, пройденный центром масс.

Кинетическая энергия катящегося тела складывается из кинетической энергии поступательного движения центра масс со скоростью υ и вращательного движения со скоростью ω относительно оси, проходящей через центр масс:

. (15)

При качении без скольжения линейная и угловая скорости связаны соотношением

υ = R ω. (16)

Преобразуем выражение для кинетической энергии (15), подставив в него (16) и (12):

Движение по наклонной плоскости является равноускоренным:

. (18)

Преобразуем (18) с учетом (4):

. (19)

Решая совместно (17) и (19), получим окончательное выражение для кинетической энергии тела, катящегося по наклонной плоскости:

. (20)

Описание установки и метода измерений

Исследовать качение тела по наклонной плоскости можно с помощью узла «плоскость» и электронного секундомера СЭ1, входящих в состав модульного учебного комплекса МУК-М2.

У
становка представляет собой наклонную плоскость 1, которую с помощью винта 2 можно устанавливать под разными углами α к горизонту (рис. 2). Угол α измеряется с помощью шкалы 3. На плоскость может быть помещен цилиндр 4 массой m . Предусмотрено использование двух роликов разной массы. Ролики закрепляются в верхней точке наклонной плоскости с помощью электромагнита 5, управление которым осуществляется с помощью

электронного секундомера СЭ1. Пройденное цилиндром расстояние измеряется линейкой 6, закрепленной вдоль плоскости. Время скатывания цилиндра измеряется автоматически с помощью датчика 7, выключающего секундомер в момент касания роликом финишной точки.

Порядок выполнения работы

1. Ослабив винт 2 (рис. 2), установите плоскость под некоторым углом α к горизонту. Поместите ролик 4 на наклонную плоскость.

2. Переключите тумблер управления электромагнитами механического блока в положение «плоскость».

3. Переведите секундомер СЭ1 в положение режим 1.

4. Нажмите кнопку «Пуск» секундомера. Измерьте время скатывания.

5. Повторите опыт пять раз. Результаты измерений запишите в табл. 1.

6. Вычислите значение механической энергии до, и после скатывания. Сделайте вывод.

7. Повторите п. 1-6 для других углов наклона плоскости.

Таблица 1

t i , c

(t i <t >) 2

пути s , м

Угол наклона

ролика, кг

W п, Дж

W к, Дж

t (a,n )

<t >

å(t i <t >) 2

Δs , м

Δm , кг

8. Повторите опыт п. 1-7 для второго ролика. Результаты запишите в табл. 2, аналогичную табл. 1.

9. Сделайте выводы по всем результатам работы.

Контрольные вопросы

1. Назовите виды сил в механике.

2. Объяснить физическую природу сил трения.

3. Что называется коэффициентом трения? Его размерность?

4. Какие факторы влияют на величину коэффициента трения покоя, скольжения, качения?

5. Описать общий характер движения твердого тела при качении.

6. Как направлен момент силы трения при качении по наклонной плоскости?

7. Записать систему уравнений динамики при качении цилиндра (шара) по наклонной плоскости.

8. Вывести формулу (13).

9. Вывести формулу (20).

10. Шар и цилиндр с одинаковыми массами m и равными радиусами R одновременно начинают скатываться по наклонной плоскости с высоты h . Одновременно ли они достигнут нижней точки (h = 0)?

11. Объяснить причину торможения катящегося тела.

Библиографический список

1. Савельев, И. В. Курс общей физики в 3­х т. Т. 1 / И. В. Савельев. – М.: Наука, 1989. – § 41–43.

2. Хайкин, С. Э. Физические основы механики / С. Э. Хайкин. – М: Наука, 1971. – § 97.

3. Трофимова Т. И. Курс физики / Т. И. Трофимова. – М: Высш. шк., 1990. – § 16–19.

Букина Марина, 9 В

Движение тела по наклонной плоскости

с переходом на горизонтальную

В качестве исследуемого тела я взяла монету достоинством 10 рублей (грани ребристые).

Технические характеристики:

Диаметр монеты – 27,0 мм;

Масса монеты - 8,7 г;

Толщина - 4 мм;

Монета изготовлена из сплава латунь-мельхиор.

За наклонную плоскость я решила принять книгу длиной 27 см. Она и будет являться наклонной плоскостью. Горизонтальная же плоскость неограниченная, т. к. цилиндрическое тело, а в дальнейшем монета, скатываясь с книги, будет продолжать свое движение на полу (паркетная доска). Книга поднята на высоту 12 см от пола; угол между вертикальной плоскостью и горизонтальной равен 22 градусам.

В качестве дополнительного оборудования для измерений были взяты: секундомер, линейка обыкновенная, длинная нить, транспортир, калькулятор.

На Рис.1. схематичное изображение монеты на наклонной плоскости.

Выполним пуск монеты.

Полученные результаты занесем в таблицу 1

вид плоскости

наклонная

плоскость

горизонтальная

плоскость

*0,27 м величина постоянная tобщ=90,04

Таблица 1

Траектория движения монеты во всех опытах была различна, но некоторые части траектории были похожи. По наклонной плоскости монета двигалась прямолинейно, а при движении на горизонтальной плоскости – криволинейно.

На Рисунке 2 изображены силы, действующие на монету во время её движения по наклонной плоскости:


С помощью II Закона Ньютона выведем формулу для нахождения ускорения монеты (по Рис.2.):

Для начала, запишем формулу II Закона Ньютона в векторном виде.

Где - ускорение, с которым движется тело, - равнодействующая сила (силы, действующие на тело), https://pandia.ru/text/78/519/images/image008_3.gif" width="164" height="53">, на наше тело во время движения действуют три силы: сила тяжести (Fтяж), сила трения (Fтр) и сила реакции опоры (N);

Избавимся от векторов, при помощи проецирования на оси X и Y:

Где - коэффициент трения

Т. к. у нас нет данных о числовом значении коэффициента трения монеты о нашу плоскость, воспользуемся другой формулой:

Где S – путь, пройденный телом, V0- начальная скорость тела, а – ускорение, с которым двигалось тело, t – промежуток времени движения тела.

т. к. ,

в ходе математических преобразований получаем следующую формулу:

При проецировании этих сил на ось Х (Рис.2.) видно, что направления векторов пути и ускорения совпадают, запишем полученную форму, избавившись от векторов:

За S и t примем средние значения из таблицы, найдем ускорение и скорость (по наклонной плоскости тело двигалось прямолинейно равноускоренно).

https://pandia.ru/text/78/519/images/image021_1.gif" align="left" width="144" height="21">

Аналогично найдём ускорение тела на горизонтальной плоскости (по горизонтальной плоскости тело двигалось прямолинейно равнозамедленно)

R=1, 35 см, где R – радиус монеты

где - угловая скорость, -центростремительное ускорение, - частота обращения тела по окружности

Движение тела по наклонной плоскости с переходом на горизонтальную – прямолинейное равноускоренное, сложное, которое можно разделить на вращательное и поступательное движения.

Движение тела на наклонной плоскости является прямолинейным равноускоренным.

По II Закону Ньютона видно, что ускорение зависит только от равнодействующей силы (R), а она на протяжении всего пути по наклонной плоскости остается величиной постоянной, т. к. в конечной формуле, после проецирования II Закона Ньютона, величины, задействованные в формуле являются постоянными https://pandia.ru/text/78/519/images/image029_1.gif" width="15" height="17">поворота из некоторого начального положения.

Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая, жестко связанная с телом, перемещается, оставаясь параллельной самой себе. Все точки тела, движущегося поступательно, в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе.


Факторы, влияющие на время движения тела

по наклонной плоскости

с переходом на горизонтальную

Зависимость времени от монет разного достоинства (т. е. имеющих разный d (диаметр)).

Достоинство монеты

d монеты, см

tср, с

Таблица 2

Чем больше диаметр монеты, тем больше время её движения.

Зависимость времени от угла наклона

Угол наклона

tср, с

Тело, которое соскальзывает вниз по наклонной плоскости . В этом случае на него действуют следующие силы:

Сила тяжести mg, направленная вертикально вниз;

Сила реакции опоры N, направленная перпендикулярно плоскости;

Сила трения скольжения Fтр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела).

Введем наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg, а вектора силы трения Fтр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.

Сила трения скольжения Fтр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: Fтр = µmg cos(α). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз, получаем выражения суммарной равнодействующей силы и ускорения:

Fx = mg(sin(α) – µ cos(α));

ax = g(sin(α) – µ cos(α)).

ускорение:

скорость равна

v=ax*t=t*g(sin(α) – µ cos(α))

через t=0.2 с

скорость равна

v=0.2*9.8(sin(45)-0.4*cos(45))=0.83 м/с

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=GMm/R2 (2.28)

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле

g=Fт/m=GM/R2. (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы (2.28) видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

В § 5 отмечалось также, что на ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с2.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.

Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).



Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

gastroguru © 2017