Самый далекий объект от земли. Обнаружен самый удаленный объект во вселенной

Изучение самых далёких галактик может показать нам объекты, расположенные в миллиардах световых лет от нас, но даже с идеальной технологией пространственный промежуток между самой далёкой галактикой и Большим взрывом будет оставаться огромным.

Вглядываясь во Вселенную, мы видим свет везде, на всех расстояниях, на которые только способны заглянуть наши телескопы. Но в какой-то момент мы наткнёмся на ограничения. Одно из них накладывается космической структурой, формирующейся во Вселенной: мы можем видеть только звёзды, галактики и прочее, только если они излучают свет. Без этого наши телескопы ничего не способны разглядеть. Другое ограничение, при использовании видов астрономии, не ограничивающихся светом - это ограничение того, какая часть Вселенной доступна для нас с момента Большого взрыва. Две эти величины могут не быть связанными друг с другом, и именно по этой теме нам задаёт вопрос наш читатель:

Почему красное смещение реликтового излучения находится в пределах 1000, хотя самое большое красное смещение любой галактики из тех, что мы видели, равно 11?
Сначала мы должны разобраться с тем, что происходит в нашей Вселенной с момента Большого взрыва.



Наблюдаемая Вселенная может простираться на 46 млрд световых лет во всех направлениях с нашей точки зрения, но наверняка есть и другие её участки, ненаблюдаемые нами, и, возможно, они даже бесконечны.

Весь набор того, что мы знаем, видим, наблюдаем и с чем взаимодействуем, называют «наблюдаемой Вселенной». За пределами него, скорее всего, находится ещё больше участков Вселенной, и со временем у нас будет возможность видеть всё больше и больше этих участков, когда свет от удалённых объектов, наконец, достигнет нас после космического путешествия в миллиарды лет. Мы можем видеть то, что видим (и больше, а не меньше), благодаря комбинации из трёх факторов:


  • Со времени Большого взрыва прошло конечное количество времени, 13,8 млрд лет.

  • Скорость света, максимальная скорость для любого сигнала или частицы, передвигающегося по Вселенной, конечна и постоянна.

  • Сама ткань пространства растягивается и расширяется с момента Большого взрыва.


Временная шкала истории наблюдаемой Вселенной

То, что нам видно сегодня, является результатом работы трёх этих факторов, совместно с изначальным распределением материи и энергии, работающих по законам физики на протяжении всей истории Вселенной. Если мы хотим узнать, какой была Вселенная в любой ранний момент времени, нам надо всего лишь пронаблюдать, какой она стала сегодня, измерить все связанные с этим параметры, и подсчитать, какой она была в прошлом. Для этого нам потребуется много наблюдений и измерений, но уравнения Эйнштейна, пусть и такие трудные, по крайней мере, недвусмысленны. Выводимые результаты выливаются в два уравнения, известные, как уравнения Фридмана , и с задачей их решения каждый студент, изучающий космологию, сталкивается напрямую. Но мы, честно говоря, сумели провести несколько удивительных измерений параметров Вселенной.


Глядя в направлении северного полюса Галактики Млечный Путь, мы можем заглядывать в глубины космоса. На этом изображении размечены сотни тысяч галактик, и каждый его пиксель - это отдельная галактика.

Мы знаем, с какой скоростью она расширяется сегодня. Мы знаем, какова плотность материи в любом направлении, в котором мы смотрим. Мы знаем, сколько структур формируется на всех масштабах, от шаровых скоплений до карликовых галактик, от крупных галактик до их групп, скоплений и крупномасштабных нитевидных структур. Мы знаем, сколько во Вселенной нормальной материи, тёмной материи, тёмной энергии, а также более мелких составляющих, таких, как нейтрино, излучение, и даже чёрные дыры. И только исходя из этой информации, экстраполируя назад во времени, мы можем вычислить как размер Вселенной, так и скорость её расширения в любой момент её космической истории.


Логарифмический график зависимости размера наблюдаемой Вселенной от возраста

Сегодня наша обозримая Вселенная простирается на примерно 46,1 млрд световых лет во всех направлениях с нашей точки зрения. На таком расстоянии находится точка старта воображаемой частицы, которая отправилась в путь в момент Большого взрыва, и, путешествуя со скоростью света, прибыла бы к нам сегодня, спустя 13,8 млрд лет. В принципе, на этом расстоянии были порождены все гравитационные волны, оставшиеся от космической инфляции - состояния, предшествовавшего Большому взрыву, настроившего Вселенную и обеспечившего все начальные условия.


Гравитационные волны, созданные космической инфляцией - это самый старый сигнал из всех, которые человечество в принципе могло бы засечь. Они родились в конце космической инфляции и в самом начале горячего Большого взрыва.

Но во Вселенной остались и другие сигналы. Когда ей было 380 000 лет, остаточное излучение от Большого взрыва прекратило рассеиваться со свободных заряженных частиц, поскольку те образовали нейтральные атомы. И эти фотоны, после образования атомов, продолжают испытывать красное смещение вместе с расширением Вселенной, и их можно увидеть сегодня при помощи микроволновой или радиоантенны/телескопа. Но из-за большой скорости расширения Вселенной на ранних этапах, «поверхность», которая «светится» для нас этим остаточным светом - космический микроволновой фон - находится всего в 45,2 млрд световых лет от нас. Расстояние от начала Вселенной до того места, где Вселенная находилась через 380 000 лет, получается равным 900 млн световых лет!


Холодные флуктуации (синие) в реликтовом излучении не холоднее сами по себе, а просто представляют участки с усиленным гравитационным притяжением из-за увеличенной плотности материи. Горячие (красные) участки горячее, потому что излучение в этих регионах живёт в менее глубоком гравитационном колодце. Со временем более плотные регионы с большей вероятностью вырастут в звёзды, галактики и скопления, а менее плотные сделают это с меньшей вероятностью.

Пройдёт ещё немало времени, прежде чем мы найдём самую удалённую из всех открытых нами галактик Вселенной. Хотя симуляции и расчёты показывают, что самые первые звёзды могли сформироваться через 50-100 млн лет с начала Вселенной, а первые галактики - через 200 млн лет, так далеко назад мы ещё не заглядывали (хотя, есть надежда, что после запуска в следующем году космического телескопа им. Джеймса Уэбба мы сможем это сделать!). На сегодня космическим рекордом владеет галактика, показанная ниже, существовавшая, когда Вселенной было 400 млн лет - это всего 3% от текущего возраста. Однако эта галактика, GN-z11, расположена всего в 32 млрд световых лет от нас: это порядка 14 млрд световых лет от «края» наблюдаемой Вселенной.


Самая удалённая из всех обнаруженных галактик: GN-z11, фото с наблюдения GOODS-N, проведённого телескопом Хаббл.

Причина этого состоит в том, что вначале скорость расширения со временем очень быстро падала. Ко времени, когда галактика Gz-11 существовала в наблюдаемом нами виде, Вселенная расширялась в 20 раз быстрее, чем сегодня. Когда было испущено реликтовое излучение, Вселенная расширялась в 20 000 раз быстрее, чем сегодня. На момент Большого взрыва, насколько мы знаем, Вселенная расширялась в 10 36 раз быстрее, или в 1 000 000 000 000 000 000 000 000 000 000 000 000 раз быстрее, чем сегодня. Со временем скорость расширения Вселенной сильно уменьшилась.

И для нас это очень хорошо! Баланс между первичной скоростью расширения и общим количеством энергии во Вселенной во всех её формах идеально соблюдается, вплоть до погрешности наших наблюдений. Если бы во Вселенной было хоть немного больше материи или излучения на ранних этапах, она бы схлопнулась обратно миллиарды лет назад, и нас бы не было. Если бы во Вселенной было слишком мало материи или излучения на ранних этапах, она бы расширилась так быстро, что частицы не смогли бы встретиться друг с другом, чтобы даже сформировать атомы, не говоря уже о более сложных структурах типа галактик, звёзд, планет и людей. Космическая история, которую рассказывает нам Вселенная, это история чрезвычайной сбалансированности, благодаря которой мы и существуем.


Замысловатый баланс между скоростью расширения и общей плотностью Вселенной настолько хрупок, что даже отклонение в 0,00000000001% в любую сторону сделало бы Вселенную совершенно необитаемой для любой жизни, звёзд или даже планет в любой момент времени.

Если верны лучшие из наших современных теорий, то первые настоящие галактики должны были сформироваться в возрасте от 120 до 210 млн лет. Это соответствует расстоянию от нас до них в 35-37 млрд световых лет, и расстоянию от самой дальней галактики до края наблюдаемой Вселенной в 9-11 млрд световых лет на сегодня. Это чрезвычайно далеко, и говорит об одном удивительном факте: Вселенная чрезвычайно быстро расширялась на ранних этапах, а сегодня расширяется гораздо медленнее. 1% возраста Вселенной отвечает за 20% её общего расширения!


История Вселенной полна фантастических событий, но с тех пор, как закончилась инфляция и произошёл Большой взрыв, скорость расширения стремительно падала, и замедляется, пока плотность продолжает уменьшаться.

Расширение Вселенной растягивает длину волны света (и отвечает за видимое нами красное смещение), и за большое расстояние между микроволновым фоном и самой далёкой галактикой отвечает большая скорость этого расширения. Но размер Вселенной сегодня свидетельствует ещё кое о чём удивительном: об невероятных эффектах, происходивших с течением времени. Со временем Вселенная продолжит расширяться всё больше и больше, и к тому времени, когда её возраст будет в десять раз превышать сегодняшний, расстояния увеличатся так сильно, что нам уже не будут видны никакие галактики за исключением членов нашей местной группы, даже с телескопом, эквивалентным Хабблу. Наслаждайтесь всем тем, что видно сегодня, великим разнообразием того, что присутствует на всех космических масштабах. Оно не будет существовать вечно!

Астрономы нашли самый удаленный из известных объектов во Вселенной. Возраст галактики UDFy-38135539 составляет 13,1 миллиарда лет - то есть она образовалась спустя всего 600 миллионов лет после Большого взрыва. Исследователи описали обнаруженную ими галактику в статье в журнале Nature . Коротко о работе пишет New Scientist.

Впервые снимок галактики получил телескоп "Хаббл" в сентябре 2009 года. Излучение очень бледного объекта было сильно сдвинуто в красную область спектра - такое смещение характерно для древних объектов. Чем смещение больше, тем старше объект - а, значит, тем большее расстояние прошел свет от объекта до наблюдателя. Однако возможно и альтернативное объяснение - излучение с похожими спектральными характеристиками могут испускать объекты наподобие коричневых карликов, расположенные неподалеку от Солнечной системы.

Для того чтобы сделать выбор между этими двумя возможностями, астрономы провели непрерывные 16-часовые наблюдения найденного ими объекта с использованием 8,2-метрового телескопа Европейской южной обсерватории (ESO) в Чили. Анализ собранных данных о спектре объекта позволил ученым установить, что это галактика, и она удалена от Земли на 13,1 миллиарда световых лет (именно столько лет потребовалось свету, чтобы добраться до оптики телескопа). Считается, что возраст Вселенной составляет около 13,7 миллиарда лет.

Согласно наиболее общепринятым гипотезам эволюции Вселенной, через несколько сотен тысяч лет после Большого взрыва протоны и электроны начали объединяться друг с другом и формировать водород. Еще через 150 миллионов лет начали образовываться первые галактики, и пространство между ними было заполнено водородом, поглощавшим свет звезд. Однако постепенно под воздействием излучения от светил водород расщеплялся на протоны и электроны (этот процесс называют реионизацией), и Вселенная постепенно становилась прозрачной. Считалось, что межгалактическое пространство более или менее расчистилось спустя приблизительно 800 миллионов лет после Большого взрыва.

Тот факт, что астрономы смогли увидеть галактику UDFy-38135539, означает, что реионизация шла полным ходом уже тогда, когда Вселенной было только 600 миллионов лет (в противном случае наблюдать UDFy-38135539 было бы невозможно). Расчеты авторов исследования показывают, что излучения только этой галактики было недостаточно для расчистки окружавшего пространства, поэтому астрономы предполагают, что UDFy-38135539 "помогали" соседние звездные скопления.

До сих пор самым удаленным из найденных во Вселенной объектов гамма-всплеск GRB 090423, который произошел около 13,1 миллиарда лет назад (по уточненным оценкам - около 13 миллиардов лет назад).

Телескоп Swift обновил собственный рекорд, зафиксировав свет от самого далекого объекта во Вселенной. Объект взорвался, превратившись в черную дыру, всего через 350 млн лет после Большого взрыва.

Утром пятницы 5 февраля, в 7.18:43 по московскому времени, гамма-телескоп BAT на борту научного спутника Swift заметил резкую вспышку гамма-излучения со стороны созвездия Льва. Поток высокоэнергичных квантов нарастал около восьми секунд, а затем стал падать; через полминуты после начала небесный фейерверк в гамма-диапазоне закончился.

Меньше чем через три минуты Swift уже успел развернуться в сторону вспышки своим рентгеновским телескопом XRT и увидел новый источник рентгеновских квантов, яркость которого стремительно падала. Сомнений больше не было: это гамма-всплеск, грандиозный космический взрыв, отмечающий рождение черной дыры где-то в глубинах космоса. По всем обсерваториям мира разошлись циркуляры с призывами наблюдать GRB100205A (такое обозначение получила вспышка) в оптическом и инфракрасном диапазонах. В сообщениях уточнялось, что собственный оптический телескоп «Свифта», UVOT, не смог ничего разглядеть на месте взрыва -- ни в оптике, ни в ультрафиолете.

В плотной и теплой Вселенной

Красное смещение Астрономы измеряют расстояние с помощью величины красного смещения z, масштаба увеличения длины световых волн. Оно показывает, во сколько раз увеличился наш мир за время путешествия света. z=0 соответствует здесь и сегодня, а если z равно, скажем, трем, свет был испущен, когда Вселенная была в z+1, то есть в четыре раза меньше. Сколько это в световых годах, зависит от истории расширения Вселенной.

Похоже, неудаче маленького UVOT и многих наземных инструментов среднего калибра, пытавшихся поймать космическую вспышку, есть очень простое объяснение: GRB100205A -- рекордно далекий всплеск. По предварительным данным, его красное смещение z оценивается величиной от 11 до 13,5, а значит, черная дыра, появлению которой он салютовал, родилась всего через 300-400 млн лет после Большого взрыва. , GRB090423, пойманный тем же «Свифтом» в прошлом году, всплеснул в почти вдвое старшей Вселенной: от начала времен его отделяли 630 млн лет.

350 млн лет -- очень небольшой возраст: в это время Вселенная была в 13 раз меньше, а значит, в 2 тыс. раз плотнее, чем в наши дни! Водород и гелий, сваренные в первые три минуты после Большого взрыва, еще только стекались в растущие потенциальные ямы самых первых, карликовых галактик, а кроме водорода и гелия вокруг ничего не было. И все это было погружено в тепловую баню вездесущего реликтового излучения, температура которого была почти 40 градусов по Кельвину, а плотность -- в 25 тыс. раз выше, чем сейчас.

Впрочем, вслух астрономы пока не заявляют о новом рекорде. Массивные звезды -- а только они, по современным представлениям, способны порождать гамма-всплески и превращаться в черные дыры -- живут всего несколько миллионов лет -- совсем чуть-чуть по сравнению с оценкой возраста Вселенной на момент взрыва. Но вот как они могли родиться в ту эпоху -- в тепле, без тяжелых элементов, в галактиках небольшой плотности, -- большой вопрос. Именно поэтому ученые, с положенным им консерватизмом, пока говорят о «кандидате в гамма-всплески на z~11–13,5».

Косвенные улики

Впрочем, прямых доказательств рекордной дальности -- например спектра, в котором были бы видны линии, сдвинутые с измеренных в лаборатории позиций в 12-14 раз, -- у ученых действительно нет. Зато, как на суде против Дмитрия Карамазова, полно косвенных свидетельств.

Во-первых, уже отмеченная неспособность большинства инструментов увидеть сам гамма-всплеск (вернее его оптическое послесвечение) даже в первые часы после вспышки. Во-вторых -- подозрительно небольшое поглощение света в рентгеновском диапазоне, характерное как раз для гамма-всплесков, вспыхивающих в ранней Вселенной, когда вокруг еще было мало того вещества, которое могло бы рассеять рентгеновские лучи. В-третьих -- полное отсутствие хоть каких-то следов материнской галактики гамма-всплеска на очень глубоких изображениях, полученных наземными телескопами. Многие инструменты, участвовавшие в поисках, легко нашли бы типичные галактики даже на расстояниях в 12-12,5 млрд световых лет от Земли, однако ничего не видят.

Что выпадет В поисках самых далеких галактик астрономы применяют так называемую методику цветовых «выпадений». Она основана на том, что спектр любой галактики выглядит более или менее плавной кривой, местами изрезанной спектральными линиями, однако в ультрафиолетовой области при длине волны менее 121,6 нм, где значительно возрастает поглощение света водородом, спектр резко обрывается. При этом спектр далеких галактик, который мы принимаем на Земле, сдвинут в красную область -- за миллиарды лет путешествия по Вселенной длина волны каждого фотона увеличилась во столько же раз, как и вся наша расширяющаяся Вселенная. Чем дальше объект, тем дольше шел свет и тем больше сдвиг. Поэтому и спектр у близких галактик обрывается в ультрафиолете, у далеких -- в оптическом диапазоне, а у самых-самых дальних переезжает в инфракрасную область спектра.

Ну и, наконец, «математическое» доказательство -- впрочем, столь же доказательное, как и письмо Мити Грушеньке. Восьмиметровому телескопу Gemini North на Гавайских островах, пусть и через 2,5 часа после вспышки, но все-таки удалось навестись на место взрыва и засечь здесь быстро гаснущий объект. Однако увидеть его получилось лишь в инфракрасном диапазоне. И его блеск в фильтре K, на длине волны в 2,2 микрона, был почти в четыре раза выше, чем в фильтре H, на длине волны в 1,65 мкм.

Самое простое объяснение такому скачку -- поглощение более коротковолнового излучения резонансной линией водорода, Ly α (читается «лайман-альфа»). Только вот в лабораторной системе отсчета эта линия находится на длине волны в 0,1216 нм. Если на границу между фильтрами H и K эту линию перетащило расширение Вселенной, то в момент ее испускания наш мир должен был быть в 12-14,5 раза меньше, чем сейчас (опять же, при консервативном анализе). Отсюда и проистекает оценка красного смещения z~11–13,5.

Дело вкуса

Впрочем, против этого «доказательства» можно найти возражения. Альтернативная модель предполагает, что свет в фильтре H поглотила пыль, расположенная на красном смещении z~4. В этом случае и GRB100205A может находиться «всего» в 12 млрд световых лет от Земли -- далеко, конечно, но на рекорд не тянет.

Правда, поглощение в этом случае должно быть очень значительным, примерно в 15-20 раз, и где взять столько пыли через 1,7 млрд лет после Большого взрыва -- тоже не очень понятно. Кроме того, отсутствие на снимках какой-либо галактики, в которой могла обитать необходимая пыль, и сравнительно слабое поглощение света в рентгеновском диапазоне тоже плохо вяжутся с этим объяснением. Но тут уж надо выбирать из двух необычных гипотез ту, что наименее неправдоподобна: много пыли через 1,7 млрд лет или рождение черной дыры через 350 млн лет от сотворения мира. Пока новых данных нет, такой выбор, по сути, дело личного вкуса теоретиков.

И самое обидное, что нужные данные могут появиться еще очень нескоро. С момента гамма-всплеска прошло уже три недели, так что заметное оптическое послесвечение от него давно погасло. И теперь надо очень-очень долго копить свет, чтобы увидеть запыленную галактику на z~4. Либо еще дольше ждать, пока появится инструмент, способный разглядеть материнскую галактику GRB100205A на z больше десяти. А то и сам остаток этого взрыва -- доживем ведь когда-нибудь и до таких телескопов.

Орбитальный телескоп имени Хаббла, запущенный в 1990 году, стал главным инструментом землян, раздвинувшим видимые границы Вселенной. Заголовки «астрономы нашли самую далекую галактику» стали привычными для СМИ и научных публикаций, ведь находить самый удаленный объект действительно можно хоть каждый день. Может показаться, что качественного прорыва подобные открытия не несут: чем мощнее мы берем бинокль за городом, тем дальше мы видим.

Однако эта аналогия здесь не вполне уместна. Взяв более мощный бинокль, мы продолжаем видеть по сути одни и те же объекты - поля, реки, леса, постройки. Все это растет, движется, стоит и не падает по давно известным нам законам.

Видимый же сегодня «край» содержит объекты, испустившие свет спустя всего сотни миллионов лет после Большого взрыва. В ту эпоху Вселенная только начинала обретать очертания. Поэтому открывая самые далекие галактики мы стараемся понять не «а что там дальше?», а «с чего все начиналось?».

Красное смещение

Вселенская линейка Красным смещением называется отношение величины сдвига спектральной линии в длинноволновую сторону, к длине волны в лабораторной системе отсчета.

Для объектов, излучивших свет на заре рождения Вселенной, этот сдвиг в разы превышает саму длину волны

Вселенная постоянно расширяется, причем, чем дальше наблюдаемый на больших масштабах объект, тем быстрее он от нас удаляется. Поэтому самым удобным мерилом расстояния считается оценка покраснения объекта, вызванного эффектом Допплера. Самая далекая до последнего времени галактика соответствовала красному смещению z=8,6. Она родилась спустя 600 млн лет после Большого взрыва.

Период от 150 до 800 млн лет после Большого взрыва относится к так называемому периоду реионизации, когда первые звезды и галактики ионизовали межгалактический газ.

В статье, опубликованной в журнале Nature, астрономы под руководством Ричарда Боуэнса из Лейденского университета сообщают об открытии еще более далекой галактики с красным смещением порядка 10. Галактику UDFj-39546284 заметили в 2009 году, спустя всего три месяца после того, как на телескопе Hubble была установлена широкоугольная камера UDFj-39546284. Тусклое пятнышко, видимое на глубоком обзоре неба - не что иное как компактная галактика, состоящая из молодых голубых звезд. Свет, который мы видим от нее, испущен спустя всего 480 млн лет после Большого взрыва.

«Эти наблюдения дают нам наилучший взгляд на самые ранние объекты, которые удавалось найти», — пояснил Ричард Боуэнс.

Ясли Вселенной

Галактика, свет которой долетел до нас, слишком мала и юна, чтобы иметь спиральную форму или другие особенности. Ученые установили, что галактику населяли звезды возрастом 100−200 млн лет. Они образовались из газа, собранного вокруг сгустков загадочной темной материи.

По словам исследователей, в наблюдаемую эпоху юная Вселенная переживала своеобразный бэби-бум: в период с 480 до 650 млн лет после Большого взрыва число звезд увеличилось на один порядок. «Бешеный темп, с которым рождались звезды, говорит нам, что если заглянуть чуть подальше, мы увидим куда более драматичные изменения, происходившие при образовании самых первых галактик», — пояснил Гарт Иллингуорт из Калифорнийского университета в Санта-Крузе.

За краем края

Миновав рубеж в z=10 астрономы приблизились к «краю края». Первые 500 млн лет (при z от 1000 до 10) после Большого взрыва остаются белым пятном в принятой сегодня иерархической модели образования галактик - от звездных скоплений к эллиптическим и спиральным галактикам. Галактика UDFj-39546284 обнаружена в самом дальнем инфракрасном диапазоне, который могут наблюдать приборы телескопа Hubble. Заглянуть дальше, в самые первые годы существования Вселенной, ученые надеются при помощи телескопа имени Джеймса Вебба.

Астрономы из Техасского университета A&M и Техасского университета в Остине обнаружили самую далёкую из известных нам галактик. Согласно данным спектрографии, она находится на расстоянии примерно 30 млрд световых лет от Солнечной системы (или от нашей Галактики, что в данном случае не столь существенно, потому что диаметр Млечного пути - всего лишь 100 тыс. световых лет).

Самый дальний объект во Вселенной получил романтичное название z8_GND_5296.

«Восхитительно знать, что мы - первые люди в мире, кто увидел его, - сказал доктор наук Вител Тилви (Vithal Tilvi), соавтор научной работы, которая сейчас опубликована в онлайне (для бесплатного просмотра научных работ используйте сайт sci-hub.org).

Обнаруженная галактика z8_GND_5296 сформировалась через 700 млн лет после Большого взрыва. Собственно, в таком состоянии мы и видим её сейчас, потому что свет от новорожденной галактики только сейчас дошёл до нас, пройдя расстояние в 13,1 млрд световых лет. Но поскольку в процессе этого Вселенная расширялась, то на данную минуту, как показывают расчёты, расстояние между нашими галактиками составляет 30 млрд световых лет.

В новорожденных галактиках интересно то, что там идёт активный процесс формирования новых звёзд. Если в нашем Млечном пути появляется по одной новой звезде в год, то в z8_GND_5296 - примерно по 300 в год. То, что происходило 13,1 млрд лет назад, мы можем спокойно сейчас наблюдать в телескопы.

Возраст далёких галактик можно определить по космологическому красному смещению, вызванному в том числе эффектом Доплера. Чем быстрее удаляется объект от наблюдателя, тем сильнее проявляется эффект Доплера. Галактика z8_GND_5296 показала красное смещение 7,51. Около сотни галактик обладают красным смещением больше 7, то есть они сформировались до того, как Вселенной исполнилось 770 млн лет, и предыдущим рекордом было 7,215. Но лишь у нескольких галактик расстояние подтверждено по данным спектрографии, то есть по спектральной линии Лайман альфа (о ней ниже).

Радиус Вселенной составляет как минимум 39 млрд световых лет. Казалось бы, это противоречит возрасту Вселенной в 13,8 млрд лет, но противоречия нет, если учесть расширение самой ткани пространства-времени: для этого физического процесса не существует ограничения по скорости.

Учёным не совсем понятно, почему не удаётся наблюдать другие галактики возрастом до 1 млрд лет. Удалённые галактики наблюдают по чёткому проявлению спектральной линии L α (Лайман альфа), которая соответствует переходу электрона со второго энергетического уровня на первый. Почему-то у галактик младше 1 млрд лет линия Лайман альфа проявляется всё слабее. Одна из теорий состоит в том, что как раз в то время происходил переход Вселенной из непрозрачного состояния с нейтральным водородом в полупрозрачное состояние с ионизированным водородом. Мы просто не можем увидеть галактики, которые скрыты в «тумане» из нейтрального водорода.

Как же z8_GND_5296 смогла пробиться через туман нейтрального водорода? Учёные предполагают, что она ионизировала ближайшие окрестности, так что протоны смогли прорваться. Таким образом, z8_GND_5296 - самая первая из известных нам галактик, которая вышла из непрозрачного месива нейтрального водорода, наполнявшего Вселенную в первые сотни миллионов лет после Большого взрыва.

gastroguru © 2017