Что такое ДНК и РНК: каковы функции нуклеиновых кислот в клетке. Функции днк Каковы основные функции днк в клетке

Существует два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза - в ДНК, рибоза - в РНК) и остаток фосфорной кислоты.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований - аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований

Молекулы ДНК и РНК существенно различаются по своему строению и выполняемым функциям.

Молекула ДНК может включать огромное количество нуклеотидов - от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей , соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

При исследовании различных ДНК (у разных видов организмов) было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин - только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности (т. е. дополнения), а противоположные полинуклеотидные цепи называются комплементарными. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК - способность к самовоспроизведению или удвоению . При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим.

14 . Рибонуклеиновые кислоты, их виды, строение, назначение.

РНК - класс нуклеиновых кислот,линейных полимеровнуклеотидов, в состав которых входят остаток фосфорной кислоты, рибоза (в отличие отДНК, содержащей дезоксирибозу) и азотистые основания -аденин,цитозин,гуанини урацил (в отличие от ДНК, содержащий вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусов. РНК содержатся главным образом вцитоплазме клеток. Эти молекулы синтезируются в клетках всех клеточных живых организмов, а также содержатся в вироидах и некоторых вирусах. Основные функции РНК в клеточных организмах - это шаблон для трансляции генетической информации в белки и поставка соответствующих аминокислот к рибосомам. В вирусах является носителем генетической информации (кодирует белки оболочки и ферменты вирусов). Структура РНК .

Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил.

Виды и типы РНК клеток.

Существуют три типа РНК, каждый из которых выполняет свою особую роль в синтезе белка.

1. Матричная РНК переносит генетический код из ядра в цитоплазму, определяя таким образом синтез разнообразных белков.

2. Транспортная РНК переносит активированные аминокислоты к рибосомам для синтеза полипептидных молекул.

3. Рибосомная РНК в комплексе примерно с 75 разными белками формирует рибосомы - клеточные органеллы, на которых происходит сборка полипептидных молекул.

Матричная РНК представляет собой длинную одноцепочечную молекулу, присутствующую в цитоплазме. Эта молекула РНК содержит от нескольких сотен до нескольких тысяч нуклеотидов РНК, образующих кодоны, строго комплементарные триплетам ДНК.

Еще один тип РНК, играющий важнейшую роль в синтезе белка, называют транспортной РНК , поскольку он транспортирует аминокислоты к строящейся молекуле белка. Каждая транспортная РНК специфически связывается только с одной из 20 аминокислот, составляющих белковые молекулы. Транспортные РНК действуют как переносчики специфических аминокислот, доставляя их к рибосомам, на которых происходит сборка полипептидных молекул.

Каждая специфическая транспортная РНК распознает «свой» кодон матричной РНК, прикрепившейся к рибосоме, и доставляет соответствующую аминокислоту на соответствующую позицию в синтезируемой полипептидной цепи. Цепь транспортной РНК гораздо короче матричной РНК, содержит всего около 80 нуклеотидов и упакована в форме клеверного листа. На одном конце транспортной РНК всегда находится аденозинмонофосфат (АМФ), к которому через гидроксильную группу рибозы прикрепляется транспортируемая аминокислота. Транспортные РНК служат для прикрепления специфических аминокислот к строящейся полипептидной молекуле, поэтому необходимо, чтобы каждая транспортная РНК обладала специфичностью и в отношении соответствующих кодонов матричной РНК. Код, посредством которого транспортная РНК распознает соответствующий кодон на матричной РНК, также является триплетом и его называют антикодоном. Антикодон располагается примерно посередине молекулы транспортной РНК. Во время синтеза белка азотистые основания антикодона транспортной РНК прикрепляются с помощью водородных связей к азотистым основаниям кодона матричной РНК. Таким образом, на матричной РНК выстраиваются в определенном порядке одна за другой различные аминокислоты, формируя соответствующую аминокислотную последовательность синтезируемого белка.

Вспомните!

Почему нуклеиновые кислоты относят к гетерополимерам?

Состоят из разных мономеров – нуклеотидов, но сами нуклеотиды различаются между собой некоторыми структурами.

Что является мономером нуклеиновых кислот?

Нуклеотиды

Какие функции нуклеиновых кислот вам известны?

Хранение и передача наследственной информации. В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов. Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме. В РНК каждый ее тип выполняет свою функцию в зависимости от своего строения. м-РНК – копия участка ДНК, где записаны информация о числе, составе и последовательности аминокислотных остатков, определяющих структуру и функции белковой молекулы. В данной РНК заключен план построения молекулы полипептида. т-РНК – ее роль состоит в присоединении молекулы аминокислоты и транспортировке ее к месту синтеза белка. р-РНК – соединяется с белком и образует особые органоиды – рибосомы, на которых и осуществляется сборка белковых молекул в клетке любого живого организма.

Какие свойства живого определяются непосредственно строением и функциями нуклеиновых кислот?

Наследственность, изменчивость, размножение

Вопросы для повторения и задания

1. Что такое нуклеиновые кислоты? Почему они получили такое название?

Нуклеиновые кислоты – это биополимеры, мономерами которых являются нуклеотиды. От лат. «нуклеос» - ядро, так как эти кислоты располагаются, или синтезируются в ядре, или у прокариот функцию ядерной информации выполняет нуклеоид (ДНК илиРНК).

2. Какие типы нуклеиновых кислот вы знаете?

ДНК, РНК: и-РНК, т-РНК, р-РНК.

4. Назовите функции ДНК. Как взаимосвязаны строение и функции ДНК?

Хранение и передача наследственной информации – располагается ДНК строго в ядре.

Молекула ДНК способна к самовоспроизведению путем удвоения. Под действием ферментов двойная спираль ДНК раскручивается, связи между азотистыми основаниями разрываются.

В ДНК заключена информация о первичной структуре всех белков, необходимых организму. Эта информация записана в линейной последовательности нуклеотидов.

Так как белки играют первостепенную роль в жизнедеятельности организма, участвуя в строении, развитии, обмене веществ, то можно утверждать, ДНК хранит информацию об организме.

5. Какие виды РНК существуют в клетке, где они синтезируются? Перечислите их функции.

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Все виды РНК синтезируются на матрице ДНК.

6. Достаточно ли знать, какой моносахарид входит в состав нуклеотидов, чтобы понять, о какой нуклеиновой кислоте идёт речь?

Да, в состав РНК входит рибоза.

В состав ДНК входи дезоксирибоза.

Виды РНК не возможно будет по одному моносахариду распознать.

7. Фрагмент одной цепи ДНК имеет следующий состав: А-Г-Ц-Г-Ц-Ц-Ц-Т-А-. Используя принцип комплементарности достройте вторую цепь.

А-Г-Ц-Г-Ц-Ц-Ц-Т-А

Т-Ц-Г-Ц-Г- Г-Г-А-Т

Подумайте! Вспомните!

1. Почему в клетках существует три вида молекул РНК, но только один вид ДНК?

ДНК – самая крупная молекула, из ядра выйти не может, поры маловаты. РНК мелкие молекулы, каждая выполняет свою функцию, обеспечивая различные функции в клетке, одновременно работая. На матрице ДНК одновременно может синтезироваться множество видов РНК, и все они идут выполнять свои функции.

3. Какие виды РНК будут одинаковы у всех организмов? Какой вид РНК обладает максимальной изменчивостью? Объясните свою точку зрения.

и-РНК и т-РНК будет у всех организмов одинаковая, так как биосинтез белка идет по единому механизму, а т-РНК переносит одни и те же 20 аминокислот. р-РНК может быть иной.

В данной статье вы сможете узнать биологическую роль ДНК. Итак, данная аббревиатура всем знакома еще со школьной скамьи, но далеко не все имеют представление, что это такое. В памяти после школьного курса биологии остаются минимальные знания по генетике и наследственности, так как эту сложную тему детям дают только поверхностно. Но эти знания (биологическая роль ДНК, оказываемое влияние на организм) могут быть невероятно полезными.

Начнем с того, что нуклеиновые кислоты выполняют важную функцию, а именно - обеспечивают непрерывность жизни. Эти макромолекулы представлены в двух формах:

  • ДНК (DNA);
  • РНК (RNA).

Они являются передатчиками генетического плана строения и функционирования клеток организма. Поговорим о них более подробно.

ДНК и РНК

Начнем с того, какая отрасль науки занимается такими сложными вопросами, как:

  • изучение принципов хранения ;
  • ее реализация;
  • передача;
  • изучение структуры биополимеров;
  • их функции.

Все это изучается молекулярной биологией. Именно в этой отрасли биологических наук можно найти ответ на вопрос о том, какова биологическая роль ДНК и РНК.

Эти высокомолекулярные соединения, образованные из нуклеотидов, имеют название "нуклеиновые кислоты". Именно здесь хранится информация об организме, которая определяет развитие особи, рост и наследственность.

Открытие дезоксирибонуклеиновой и приходится на 1868 год. Тогда ученым удалось обнаружить их в ядрах лейкоцитов и сперматозоидах лося. Последующее изучение показало, что ДНК можно обнаружить во всех клетках растительной и животной природы. Модель ДНК была представлена в 1953 году, а Нобелевская премия за открытие вручена в 1962 году.

ДНК

Начнем этот раздел с того, что всего выделяется 3 типа макромолекул:

  • дезоксирибонуклеиновая кислота;
  • рибонуклеиновая кислота;
  • белки.

Сейчас мы более подробно рассмотрим строение, биологическую роль ДНК. Итак, этот биополимер передает данные о наследственности, особенностях развития не только носителя, но и всех предыдущих поколений. - нуклеотид. Таким образом, ДНК является главным компонентом хромосом, содержащим генетический код.

Как становится возможной передача этой информации? Все дело заключается в умении этих макромолекул самовоспроизводиться. Число их бесконечно, что можно объяснить большими размерами, а как следствие - огромным количеством всевозможных последовательностей нуклеотидов.

Структура ДНК

Для того чтобы понять биологическую роль ДНК в клетке, необходимо ознакомиться со структурой данной молекулы.

Начнем с самого простого, все нуклеотиды в своей структуре имеют три компонента:

  • азотистое основание;
  • пентозный сахар;
  • фосфатную группу.

Каждый отдельный нуклеотид в молекуле ДНК содержит одно азотистое основание. Оно может быть абсолютно любым из четырех возможных:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин).

А и Г - пурины, а Ц, Т и У (урацил) - пирамидины.

Существует несколько правил соотношения азотистых оснований, именуемых правилами Чаргаффа.

  1. А = Т.
  2. Г = Ц.
  3. (А + Г = Т + Ц) можем перенести все неизвестные в левую сторону и получить: (А + Г)/(Т + Ц) = 1 (эта формула является наиболее удобной при решении задач по биологии).
  4. А + Ц = Г + Т.
  5. Величина (А + Ц)/(Г + Т) постоянная. У человека она равняется 0,66, а вот, например, у бактерии - от 0,45 до 2,57.

Строение каждой молекулы ДНК напоминает двойную закрученную спираль. Обратите внимание на то, что полинуклеотидные цепи при этом являются антипараллельными. То есть расположение нуклеотидных пар у одной цепи имеет обратную последовательность, чем у другой. Каждый виток этой спирали содержит целых 10 нуклеотидных пар.

Как же скрепляются между собой эти цепочки? Почему молекула прочная и не распадается? Все дело в водородной связи между азотистыми основаниями (между А и Т - две, между Г и Ц - три) и гидрофобном взаимодействии.

В завершение раздела хочется упомянуть о том, что ДНК являются самыми крупными органическими молекулами, длина которых варьируется от 0,25 до 200 нм.

Комплементарность

Остановимся более подробно на парных связях. Уже мы говорили о том, что пары азотистых оснований образуются не хаотичным характером, а в строгой последовательности. Так, аденин может связаться только с тимином, а гуанин - только с цитозином. Это последовательное расположение пар в одной цепи молекулы диктует расположение их в другой.

При репликации или удвоении для образования новой молекулы ДНК обязательно соблюдается данное правило, имеющее название "комплементарность". Можно заметить следующую закономерность, которую упоминали в сводке правил Чаргаффа - одинаково число следующих нуклеотидов: А и Т, Г и Ц.

Репликация

Теперь поговорим о биологической роли репликации ДНК. Начнем с того, что у данной молекулы есть эта уникальная способность к самовоспроизведению. Под этим термином понимается синтез дочерней молекулы.

В 1957 году было предложено три модели данного процесса:

  • консервативная (сохраняется исходная молекула и образуется новая);
  • полуконсервативная (разрыв исходной молекулы на моноцепи и присоединение комплементарных оснований к каждой из них);
  • дисперсная (распад молекулы, репликация фрагментов и сбор в случайном порядке).

Процесс репликации имеет три этапа:

  • инициация (расплетение участков ДНК при помощи фермента хеликазы);
  • элонгация (удлинение цепи путем присоединения нуклеотидов);
  • терминация (достижение необходимой длины).

У этого сложного процесса есть особенная функция, то есть биологическая роль - обеспечение точной передачи генетической информации.

РНК

Рассказали, в чем заключается биологическая роль ДНК, теперь предлагаем переходить к рассмотрению (то есть РНК).

Начнем этот раздел с того, что эта молекула имеет не менее важное значение по сравнению с ДНК. Мы ее можем обнаружить абсолютно в любом организме, клетках прокариот и эукариот. Данная молекула наблюдается даже в некоторых вирусах (речь идет об РНК-содержащих вирусах).

Отличительная особенность РНК - наличие одной цепи молекул, но, как и ДНК, она состоит из четырех азотистых оснований. В данном случае это:

  • аденин (А);
  • урацил (У);
  • цитозин (Ц);
  • гуанин (Г).

Все РНК делятся на три группы:

  • матричная, которую принято называть информационной (сокращение возможно двумя формами: иРНК или мРНК);
  • рибосомная (рРНК).

Функции

Разобравшись с биологической ролью ДНК, ее строением и особенностями РНК, предлагаем переходить к особым миссиям (функциям) рибонуклеиновых кислот.

Начнем с иРНК или мРНК, основной задачей которой является передача информации от молекулы ДНК к цитоплазме ядра. Также мРНК является матрицей для синтеза белка. Что касается процентного содержания этого вида молекул, то оно достаточно низкое (порядка 4 %).

А процентное содержание рРНК в клетке равняется 80. Они необходимы, так как являются основой рибосом. Рибосомная РНК принимает участие в синтезе белка и сборке полипептидной цепи.

Адаптер, выстраивающий аминокислоты цепи - тРНК, переносящий аминокислоты в область синтеза белка. Процентное содержание в клетке - порядка 15 %.

Биологическая роль

Подведем итог: какова биологическая роль ДНК? В момент открытия этой молекулы очевидной информации по этому поводу дать не могли, но и сейчас далеко не все известно о значении ДНК и РНК.

Если говорить об общебиологическом значении, то их роль заключается в передаче наследственной информации от поколения к поколению, синтезе белка и кодировке белковых структур.

Многие высказывают и такую версию: эти молекулы связаны не только с биологической, но и с духовной жизнью живых существ. Если верить мнению метафизиков, то в ДНК содержится опыт прошлых жизней и божественная энергия.

  • 3.Прокариоты и эукариоты. Клеточная теория, ее история и современное понимание. Значение клеточной теории для биологии и медицины.
  • 4.Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика.
  • 5.Клеточная мембрана, ее структурная организация, функции клеточной мембраны.
  • 6. Цитоплазма клетки, ее составные части и назначение
  • 10. Химический состав клетки (белки, их структура и функции).
  • 11. Нуклеиновые кислоты, их строение, локализация, значение
  • 13. Строение и функции днк. Механизмы редупликации днк. Биологическое значение. Генетический код, ее структурная организация и свойства
  • 14. Биосинтез белка.
  • 15. Ядро, его строение и функции
  • 16. Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе, кариограмма
  • 17. Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение.
  • 18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.
  • 21. Митотический цикл клетки. Характеристика периодов. Митоз, его биологическое значение. Амитоз
  • 22. Мейоз. Особенности первого и второго деления мейоза. Биоло-гическое значение. Отличие мейоза от митоза.
  • 23. Размножение, как основное свойство живого. Бесполое и половое размножение. Формы бесполого и полового размножения. Определение, сущность, биологическое значение.
  • 24. Онтогенез и его периодизация. Прямое и непрямое развитие.
  • 25. Сперматогенез, фазы и превращение клеток. Биологическое значение полового размножения.
  • 26. Овогенез. Особенности формирования женских гамет.
  • 28. Понятие об основных этапах эмбрионального развития (дробление, гаструляция, образование тканей и органов). Механизмы цитоорганогенеза у человека.
  • 29. Постэмбриональное развитие. Виды действия алкоголя и никотина на организм человека.
  • 30. Старость и старение.Смерть как биологическое явление.
  • 31. Общее понятие о гомеостазе.
  • 32.Регенерация как проявление структурного гомеостаза.
  • 34. Формы взаимосвязей между организмами в природе. Симбиоз, деление на группы. Паразитизм, как биологический феномен. Примеры.
  • 35. Основные понятия паразитологии. Система паразит – хозяин. Учения о трансмиссивных заболеваниях. Примеры.
  • 36. Простейшие. Латинские названия. Классификация, дать русские и латинские названия. Характерные черты организации. Значение для медицины.
  • 37 Размножение у простейших. Конъюгация и копуляция.
  • 38. Класс Споровики. Малярийный плазмодий. Систематика, морфология, цикл развития, видовые различия. Борьба с малярией. Задачи противомалярийной службы на современном этапе.
  • 39. Саркодовые. Основные представители. Назвать по русски и по латыни. Дизентерийная амеба. Морфология, цикл развития, лабораторная диагностика, профилактика.
  • 43. Кошачий сосальщик. Патогенез. Систематика, морфология, цикл развития, пути заражения. Лабораторная диагностика и профилактика. Очаги описторхоза в снг.
  • 44. Плоские черви. Морфология, систематика, основные представители, значение. Латинские и русские названия их и заболевания, вызываемые ими.
  • 46. Бычий цепень. Патогенез. Систематическое положение, морфология, цикл развития. Пути заражения, лабораторная диагностика болезни, профилактика.
  • 47. Эхинококк. Патогенез. Систематическое положение, морфология, цикл развития. Лабораторная диагностика, пути заражения, профилактика.
  • 48. Альвеококк. Патогенез. Систематическое положение, морфология, цикл развития. Лабораторная диагностика, пути заражения, профилактика.
  • 72. Общие закономерности филогенеза головного мозга позвоночных животных.
  • 13. Строение и функции днк. Механизмы редупликации днк. Биологическое значение. Генетический код, ее структурная организация и свойства

    ДНК – сложное органическое соединение, являющееся материальным носителем наследственной информации. Представляет собой двойной неразветвленный линейный полимер, мономерами которого служат нуклеотид. Нуклеотид ДНК состоит из азотистого основания, остатка фосфорной кислоты и углевода дезоксирибозы. Имеются 4 типа нуклеотидов, различающихся по азотистому основанию: адениновый, в состав которого входит аденин, цитозиновый – цитозин, гуаниновый - гуанин, тиминовый – тимин. Азотистое основание одной нити ДНК связано водородным мостиком с основанием другой, причем так, что А связан с Т, а Г с Ц. Они комплементарны друг другу. Именно на этом основано свойство ДНК, объясняющую её биологическую роль: способность к самовоспроизведению, т.е. к авторепродукции. Авторепродукция молекул ДНК происходит под воздействием ферментов полимеразы. При этом комплементарные цепи молекул ДНК раскручиваются и расходятся. Затем каждая из них начинает синтезировать новую. Поскольку каждое из оснований в нуклеотидах может присоединить другой нуклеотид только строго определенного строения, происходит точное воспроизведение материнской молекулы. Основная биологическая функция ДНК заключается в хранении, постоянном самовозобновлении и передаче генетической информации в клетке. Генетический код – это система расположения нуклеотидов в молекуле ДНК, контролирующая последовательность расположения аминокислот в молекуле ДНК. Сами гены не принимают непосредственного участия в синтезе белка. Посредником между геном и белком является иРНК. Ген является матрицей для построения молекулы иРНК. Кодирование информации должно осуществляться сочетаниями нескольких нуклеотидов. В многообразии белков было обнаружено 20 аминокислот. Для шифровки такого их числа достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котом каждая аминокислота шифруется тремя стоящими рядом нуклеотидами. В этом случае из 4 нуклеотидов образуется 64 триплета. Из 64 триплетов ДНК 61 кодирует различные аминокислота, оставшиеся 3 получили название бессмысленных, или нонсенс-триплетов, они выполняют функцию знаков препинания. Последовательность триплетов определяет порядок расположения аминокислот в молекуле белка. Свойства генетического кода: Вырожденность. Она проявляется в том, что многие аминокислоты шифруются несколькими триплетами. Специфичность. Каждый триплет может кодировать только одну определенную аминокислоту Универсальность. Свидетельствует о единстве происхождения всего многообразия живых форм на Земле в процессе биологической эволюции. Наряду с этими свойствами важнейшими характеристиками генетического кода являются непрерывность и непререкаемость кодонов при считывании. Это означает, что последовательность нуклеотидов считывается триплет за триплетом без пропусков, при этом соседние триплеты не перекрывают друг друга.

    14. Биосинтез белка.

    Одним из центральных процессов метаболизма клетки является синтез белка – формирование сложной молекулы белка-полимера из аминокислот-мономеров. Процесс этот протекает в цитоплазме клеток, в рибосомах при посредстве иРНК и находится под контролем ДНК ядра. Биосинтез белка состоит из 2 этапов: транскрипции и трансляции Транскрипция – процесс переноса генетического кода, записанного на молекуле ДНК на молекулу иРНК. Осуществляется в ядре. Транскрипция происходит при синтезе молекул иРНК, нуклеотиды которой присоединяются к нуклеотидам ДНК по принципу комплементарности. Молекула иРНК снимается с ДНК, как с матрицы, после чего она отделяется и перемещается в цитоплазму, где в специальных органоидах – рибосомах происходит процесс трансляции. Трансляция. Трансляция - процесс перевода генетической информации, записанной на иРНК в структуры белковой молекулы, синтезируемой на рибосомах при участии тРНК. Молекулы иРНК прикрепляются к рибосомам, а затем постепенно протягиваются через тело рибосомы. В каждый момент внутри рибосомы находится незначительный участок иРНК. Триплеты нуклеотидов передают информацию к тРНК, кодовый триплет которых комплементарен триплету иРНК. тРНК переносит аминокислоты к рибосомам. Молекула тРНК, несущая первую аминокислоту белковой молекулы, присоединяется к комплементарному ей кодону. Рибосома перемещается на 1 триплет вперед. К новому кодону рибосомы присоединяется новая тРНК, несущая вторую аминокислоту. Затем между аминокислотами возникает пептидная связь и образуется дипептид. Одновременно разрушается связь между первой аминокислотой и её тРНК, которая удаляется, а дипептид связан только со второй тРНК. Затем рибосома перемещается еще на 1 триплет. Затем к новому кодону рибосомы присоединяется уже третья молекула тРНК, несущая третью аминокислоту. При этом теряется связь второй тРНК с аминокислотой. Это происходит до тех пор, пока не будет построена вся полипептидная цепь

    К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на нуклеотиды, которые состоят из пуриновых и пиримидиновых оснований, пентозы и фосфорной кислоты. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК ) и дезоксирибонуклеиновые кислоты (ДНК ).

    ДНК – полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали (рис.10) была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса , Р. Франклин , Э. Чаргаффа ).

    Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение составляют некоторые ДНК-содержащие вирусы, которые имеют одноцепочечную ДНК).

    Диаметр двойной спирали ДНК – 2 нм, расстояние между соседними нуклеотидами – 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов (п.н.). Длина молекулы может достигать нескольких сантиметров. Молекулярный вес – десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека – около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

    Мономер ДНК – нуклеотид (дезоксирибонуклеотид ) – состоит из остатков трех веществ: 1) азотистого основания , 2) дезоксирибозы (пятиуглеродного моносахарида или пентозы) и 3) фосфорной кислоты .

    Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) – тимин, цитозин. Пуриновые основания (имеют два кольца) – аденин и гуанин.

    Моносахарид нуклеотида ДНК представлен дезоксирибозой.

    Название нуклеотида является производным от названия соответствующего основания (табл. №2). Нуклеотиды и азотистые основания обозначаются заглавными буквами.

    Табл. №2. Азотистые основания в молекуле ДНК.

    Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого (рис.11) возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой – 3"-углеродом (3"-концом)

    Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина – всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином – три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин – тимин, гуанин – цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа . Э. Чаргафф , изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина – тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

    Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

    Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы – сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» – комплементарные азотистые основания.

    Функция ДНК – хранение и передача наследственной информации.

    Свойства молекулы ДНК:

    Репликация;

    Репарация;

    Рекомбинация.

    20..Генетика как наука. Основные понятия генетики: наследственность, изменчивость; аллельные гены, гомо- и гетерозиготы; признаки - доминантные, рецессивные, альтернативные; генотип, фенотип; менделирующие признаки.

    ГЕНЕТИКА – наука о наследственности и изменчивости.

    Наследственность – всеобщее свойство живого в виде способности организмов передавать свои признаки и свойства из поколения в поколение.

    Изменчивость – свойство прямо противоположное наследственности – способность организмов приобретать новые признаки и свойства в процессе индивидуального развития организмов (онтогенеза).

    1900 год – год рождения генетики как науки.

    Тот признак родителя, которым обладали растения первого поколения, Г. Мендель назвал доминантным признаком

    Признак присутствовал в поколении F l в скрытом виде. Г. Мендель назвал его рецессивным признаком

    Признаки взаимоисключающими или контрастными (альтернативными );

    ФЕНОТИ́П Совокупность биологических свойств и признаков организма, сложившаяся в процессе его индивидуального развития.

    ГЕНОТИ́П Наследственная основа организма, совокупность всех его генов, всех наследственных факторов организма.

    Менделирующими признаками называются те, наследование которых про исходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует другой.

    Гомозиго́та- диплоидный организм или клетка, несущий идентичные аллели гена в гомологичных хромосомах.

    Гетерозигота Ге́терозиго́тными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями.

    21.Гибридологический метод, его сущность. Виды скрещиваний - моно- и полигибридное, анализирующее. Их сущность.

    Для постановки эксперимента при изучении наследования признаков, Г.Менделем был разработан метод гибридологического анализа . Вот основные его свойства:

    1) в скрещивании участвуют организмы, принадлежащие к одному виду;

    2) изучаемые признаки должны быть взаимоисключающими или контрастными (альтернативными );

    3) исходные родительские формы должны быть «чистыми линиями» (гомозиготами ) по изучаемым признакам;

    4) при изучении закономерностей наследования, необходимо начинать работу с анализа минимума количества признаков, постепенно усложняя эксперимент: родительские особи должны отличаться по одной паре альтернативных признаков → двум парам → небольшому числу пар альтернативных признаков;

    5) проводить индивидуальный анализ потомства и при наличии расщепления в поколении необходимо проводить статистический анализ;

    6) изучение закономерностей наследования проводится на протяжении нескольких поколений.

    Таким образом, гибридологический анализ – это система скрещиваний, позволяющая проследить в ряду поколений характер наследования признаков и выявить новообразования.

    Моногибидное скрещивание – родительские особи, взятые для скрещивания, отличаются одной парой альтернативных признаков.

    Дигибридное скрещивание – организмы, взятые для скрещивания, отличаются двумя парами альтернативных признаков.

    Анализирующее скрещивание проводится с целью установления генотипа исследуемой особи. Для этого исследуемую особь (?) скрещивают с рецессивной гомозиготой (аа).

    Если в F 1 наблюдается расщепление 1:1, то исследуемая особь является по генотипу гетерозиготой – Аа .

    22.Законы Менделя, основанные на моногибридном скрещивании. Эксперимент расписать.

    Первый закон Менделя (единообразия гибридов) – при скрещивании гомозиготных

    родительских особей, которые отличаются по одной паре аллельных признаков, все гибриды первого поколения единообразны по фенотипу и генотипу.

    Второй закон Менделя (расщепления гибридов второго поколения) – при

    моногибридном скрещивании гетерозиготных организмов у гибридов второго поколения происходит расщепление по фенотипу в отношении 3:1 и по генотипу – 1:2:1

    23.Гипотеза чистоты гамет, ее цитологическое обоснование.

    правило «чистоты гамет» , согласно которому наследственные задатки не смешиваются в гетерозиготном организме и расходятся "чистыми" при образовании гамет (в гамету попадает по одному фактору наследственности (аллелю ) каждого типа).

    24.Закон Менделя, основанный на дигибридном скрещивании. Эксперимент расписать.

    Третий закон Менделя (независимого наследования признаков) – при скрещивании

    двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов - 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает

    25.Хромосомный механизм детерминации признаков пола.

    В формировании признаков пола выделяют четыре уровня:

    Хромосомное определение пола;

    Определение пола на уровне гонад;

    Фенотипическое определение пола (половых признаков);

    Психологическое определение пола.

    Хромосомное определение пола у животных и человека происходит в момент оплодотворения. Для человека это формирование кариотипа 46 XX или 46 ХУ, что определяется гаметой гетерогаметного пола . У человека женский пол гомогаметный, а мужской пол гетерогаметный. У птиц и бабочек, наоборот, самцы гомогаметные, а самки - гетерогаметные. У прямокрылых насекомых самки гомогаметны, с кариотип XX, а самцы гетерогаметны - ХО, у последних отсутствует у-хромосома.

    Определение пола на уровне гонад у человека начинается с того, что на 3 - й неделе эмбрионального развития в энтодерме желточного мешка появляются первичные зародышевые клетки, которые под действием хемотаксических сигналов мигрируют в область закладки гонад (половых желез). Дальнейшее развитие признаков пола определяется наличием или отсутствием в кариотипе у-хромосомы.

    Семенники развиваются, если имеется Y-хромосома . Под контролем у-хромосомы в первичных зародышевых клетках начинает синтезироваться Н-Y-антиген, который кодируется структурным аутосомным геном, контролируемым Y-хромосомой. Для превращения зачатка гонады в семенник дос­таточно уже малой концентрации Н-Y-антигена. На развитие семенников также оказывает влияние, по меньшей мере, ещё 19 генов: аутосомных и сцепленных с Х-хромосомой. А под действием хориогонического гонадотропина, секретируемого плацентой матери, в семенниках начинают вырабатываться мужские половые гормоны (андрогены) - это тестостерон и 5-дигидро-тестостерон.

    Фенотипическое определение пола в виде развития внутренних и наружных половых органов и развития всего фенотипа по мужскому типу происходит следующим образом. Сцепленный с X-хромосомой ген (Tfm +) кодирует белок-рецептор, который, связываясь с тестостероном, доставляет его в ядра клеток, где тестостерон активизирует гены, обеспечивающие дифференцировку развивающегося организма по мужскому типу, в том числе и развитие семявыносящих путей. У зародыша человека из протока первичной почки формируются два протока: мюллеров и вольфов. У мужчин редуцируются мюллеровы протоки, а вольфовы преобразуются в семенные протоки и семенные пузырьки. При мутации гена Tfm + и дефекте, рецепторов тесто­стерона может развиться синдром тестикулярной феминизации . В таких случаях у лиц с мужским кариотипом наружные половые органы развиваются по женскому типу. При этом влагалище бывает укорочено и заканчивается слепым мешком, а матка и маточных трубы отсутствуют. По пропорциям тела такие женщины приближаются к типу манекенщиц. Отмечается аменорея (отсутствие менструаций). В то же время молочные железы развиты нор­мально. Психологическое развитие у них осуществляется по женскому типу, хотя имеет место мужской кариотип и вместо яичников у них присутствуют семенники, которые располагаются либо в больших половых губах, либо в паховом канале, либо в брюшной полости. Сперматогенез отсутствует.

    Рецепторы к гормонам имеют не только клетки-мишени тех или иных половых органов, но и нейроны головного мозга. Влияние гормонов на головной мозг начинается уже в эмбриональном периоде, что сказывается в дальнейшем и на особенностях сексуального поведения.

    Если в кариотипе зиготы отсутствует У - хромосома, формируется женский фенотип без участия специальных регуляторных факторов. При этом из двух протоков, формирующихся из протока первичной почки, вольфов проток редуцируется, а мюллеровы преобразуются в матку и маточные трубы.

    26.Сцепленное наследование, кроссинговер, определение расстояния между генами на эксперименте с дрозофилами. Группы сцепления, карты хромосом.

    gastroguru © 2017