Темная энергия и закон хаббла. Закон всеобщего разбегания галактик В чем состоит закон хаббла

Если кто-то думает, что слово «разбегаться» имеет сугубо спортивный, в крайнем случае, «антисупружеский» характер, то ошибается. Существуют куда более интересные толкования. К примеру, космологический Закон Хаббла свидетельствует о том, что разбегаются… галактики!

Три вида туманностей

Представьте: в черном, огромном безвоздушном пространстве звездные системы тихо и медленно удаляются друг от друга: «Прощай! Прощай! Прощай!». Пожалуй, оставим в стороне «лирические отступления» и обратимся к научным сведениям. В 1929 году самый влиятельный астроном XX века американский ученый Эдвин Пауэлл Хаббл (1889-1953) пришел к выводу: происходит неуклонное расширение Вселенной.

Человек, всю свою сознательную жизнь посвятивший разгадке структуры космоса, родился в Маршфилде С младых ногтей интересовался астрономией, хотя в итоге стал дипломированным юристом. После окончания Кембриджского университета Эдвин работал в Чикаго, в Йоркской обсерватории. В Первую мировую войну (1914-1918 гг.) воевал. Фронтовые годы лишь отодвинули открытие во времени. Сегодня весь ученый мир знает, что такое постоянная Хаббла.

На пути к открытию

Возвратившись с фронта, ученый обратил свой взор на высокогорную обсерваторию Маунт-Вилсон (штат Калифорния). Его приняли туда на работу. Влюбленный в астрономию, молодой человек проводил немало времени, глядя в объективы огромных телескопов размером в 60 и 100 дюймов. Для того времени - крупнейшие, почти фантастика! Над приборами изобретатели работали почти десятилетие, добиваясь максимально возможного увеличения и четкости изображения.

Напомним, видимая граница Вселенной именуется Метагалактикой. Она исходит к состоянию на момент Большого Взрыва (космологическая сингулярность). Современные положения гласят, что значения физических постоянных однородны (имеется в виду скорость света, элементарный заряд и др.). Считается, что Метагалактика вмещает 80 миллиардов галактик (удивительная цифра звучит еще так: 10 секстиллионов и 1 септильонов звезд). Форма, масса и размер - для Вселенной это совершенно иные, нежели принятые на Земле, понятия.

Загадочные цефеиды

Чтобы обосновать теорию, объясняющую расширение Вселенной, потребовались продолжительные глубокие исследования, сложные сопоставления и вычисления. В начале двадцатых годов XX века вчерашний солдат наконец смог классифицировать туманности, наблюдаемые отдельно от Млечного пути. Согласно его открытию, они спиральные, эллиптические и неправильные (три вида).

В ближайшей к нам но не самой близкой спиральной туманности Андромеды, Эдвин разглядел цефеиды (класс пульсирующих звезд). Закон Хаббла стал как никогда близок к своему окончательному формированию. Астроном вычислил расстояние до этих маячков и размеры крупнейшей Согласно его выводам, Андромеда содержит примерно один триллион звезд (в 2,5-5 раз больше Млечного пути).

Константа

Некоторые ученые, объясняя природу цефеидов, сравнивают их с надувными резиновыми мячами. Они то увеличиваются, то уменьшаются, то приближаются, то отдаляются. Лучевая скорость при этом колеблется. При сжатии температура «путешественниц» увеличивается (хотя поверхность уменьшается). Пульсирующие звезды представляют собой необычный маятник, который, рано или поздно, остановится.

Как и остальные туманности, Андромеда охарактеризована ученым, как островное вселенское пространство, напоминающее нашу галактику. В 1929 году Эдвин обнаружил: лучевые скорости галактик и их расстояния взаимосвязаны, линейно зависимы. Был определен коэффициент, выражаемый в км/с на мегапарсек так называемая постоянная Хаббла. Расширяется Вселенная - меняется константа. Но в конкретный момент во всех точках системы мироздания она одинакова. В 2016 году - 66,93 ± 0,62 (км/с)/Мпк.

Представления о системе мироздания, продолжающей эволюцию, расширяющейся, тогда получили наблюдательную основу. Процесс активно изучался астрономом до самого начала Второй мировой войны. В 1942 году он возглавил Отдел внешней баллистики на Абердинском испытательном полигоне (США). Разве об этом мечтал сподвижник, пожалуй, самой загадочной науки на свете? Нет, ему хотелось «расшифровывать» законы потаенных уголков далеких галактик! Что касается политических взглядов, то астроном открыто осуждал лидера Третьего рейха Адольфа Гитлера. На исходе своей жизни Хаббл прослыл мощным противником применения оружия массового поражения. Но вернемся к туманностям.

Великий Эдвин

Многие астрономические константы со временем корректируются, появляются новые открытия. Но все они не идут в сравнение с Законом расширения Вселенной. Знаменитого астронома XX века Хаббла (со времен Коперника равных ему не было!) ставят в один ряд с основателем экспериментальной физики Галилео Галилеем и автором новаторского вывода о существовании звездных систем Уильямом Гершелем.

Еще до того, как был открыт закон Хаббла, его автор стал членом Национальной академии наук Соединенных Штатов Америки, позже академий в разных странах, имеет множество наград. Многие, наверное, слышали про то, что свыше десяти лет назад выведен на орбиту и успешно действует космический телескоп «Хаббл». Это имя носит одна из малых планет, вращающихся между орбитами Марса и Юпитера (астероид).

Будет не совсем справедливо утверждать, что астроном только и мечтал об увековечивании своего имени, но есть косвенные свидетельства того, что Эдвин любил привлечь внимание. Сохранились фото, где он весело позирует рядом с кинозвездами. Чуть ниже мы расскажем о его попытках «зафиксировать» достижение на лауреатском уровне, еще и таким образом войти в историю космологии.

Метод Генриетты Ливитт

Знаменитый британский астрофизик в своей книге «Краткая история времени» писал, что «открытие того, что Вселенная расширяется, стало величайшей интеллектуальной революцией XX века». Хаббл был достаточно удачлив, чтобы оказаться в нужном месте в нужное время. Обсерватория Маунт-Вильсон являлась центром наблюдательной работы, лежащей в основе новой астрофизики (позже получившей название космологии). Самый мощный на Земле телескоп Хукера тогда только вступил в строй действующих.

Но постоянная Хаббла вряд ли была открыта лишь на основании везения. Требовались терпение, упорство, умение побеждать научных соперников. Так американский астроном Харлоу Шепли предлагал свою модель Галактики. Его уже знали, как ученого, определившего размеры Млечного Пути. Он широко применял методику определения расстояний по цефеидам, используя методику, составленную в 1908 году Генриеттой Суон Ливитт. Она устанавливала расстояние до объекта, опираясь на стандартные вариации света от ярких звезд (переменные цефеиды).

Не пыль и газ, а другие галактики

Харлоу Шепли считал, что ширина галактики 300 000 световых лет (приблизительно в десять раз выше допустимого значения). Однако Шепли, как и большинство астрономов того времени, был уверен: Млечный Путь - это и есть вся Вселенная. Несмотря на предположение, впервые сделанное Уильямом Гершелем в XVIII веке, он разделял распространенное мнение, что все туманности для относительно близлежащих объектов - всего лишь пятна пыли и газа в небе.

Сколько горьких, холодных ночей провел Хаббл, сидя у мощного телескопа Хукера, прежде чем смог доказать, что Шепли не прав. В октябре 1923 года Эдвин заметил в М31 туманности (созвездие Андромеды) «вспыхнувший» объект и предположил, что он не относится к Млечному Пути. После тщательного изучения фотопластин, на которых была запечатлена та же площадь, ранее исследованная другими астрономами, в том числе, Шепли, Эдвин понял, что это цефеида.

Обнаружен Космос

Хаббл использовал метод Шепли для измерения расстояния до переменной звезды. Оказалось, что оно исчисляется миллионами световых лет от Земли, что находится далеко за пределами Млечного Пути. Сама галактика содержит миллионы звезд. Известная Вселенная резко расширилась в тот же день и - в некотором смысле - был обнаружен сам Космос!

Газета "Нью-Йорк Таймс" писала: "Обнаруженные спиральные туманности являются звездными системами. Доктор Hubbel (так в оригинале) подтверждает мнение, что они похожи на "островные вселенные", похожие на нашу собственную". Открытие имело большое значение для астрономического мира, но величайший момент Хаббла был еще впереди.

Никакой статичности

Как мы говорили, победа к «Копернику №2» пришла в 1929 году, когда он классифицировал все известные туманности и измерил их скорости от спектров излучаемого света. Его поразительная находка, что все галактики отступают от нас со скоростями, увеличивающимися пропорционально их удаленности от Млечного Пути, потрясла мир. Закон Хаббла отменил традиционное представление о статической Вселенной и показал, что сама она полна динамики. Сам Эйнштейн склонял голову перед столь потрясающей наблюдательностью.

Автор теории относительности подкорректировал собственные уравнения, которыми обосновывал расширение Вселенной. Теперь Хаббл показал, что Эйнштейн был прав. Хаббловское время - величина, обратная постоянной Хаббла (t H = 1/H). Это характерное время расширения Вселенной на текущий момент.

Взорвались и разлетелись

Если постоянная в 2016 году равна 66,93 ± 0,62 (км/с)/Мпк, то расширение в настоящее время характеризуется следующими цифрами: (4,61 ± 0,05)·10 17 с или (14,610 ± 0,016)·10 9 лет. И снова немного юмора. Оптимисты говорят: это хорошо, что галактики «разбегаются». Если представить, что они сближаются, рано или поздно наступил бы Большой взрыв. Но именно с него началось зарождение Вселенной.

Галактики «рванули» (начали движение) в разные стороны одновременно. Если бы скорость удаления не была пропорциональной расстоянию - теория взрыва бессмысленна. Еще одна производная константа - хаббловское расстояние - произведение времени на скорость света: D H = ct H = c/H. В текущий момент - (1,382 ± 0,015)·10 26 м или (14,610 ± 0,016)·10 9 световых лет.

И снова о надувном шаре. Есть мнение, что даже астрономы не всегда правильно трактуют расширение Вселенной. Часть знатоков считает, что она раздувается, словно резиновый шар, не ведая никаких физических ограничений. Сами галактики при этом не только удаляются от нас, но и хаотично «суетятся» внутри неподвижных скоплений. Иные уверяют, что дальние галактики «уплывают» осколками Большого взрыва, но делают это степенно.

Мог бы стать Нобелевским лауреатом

Хаббл пытался получить Нобелевскую премию. В конце 1940-х годов даже нанимал рекламного агента (сейчас его назвали бы пиар-менеджер), чтобы тот продвинул дело. Но усилия были напрасными: категории для астрономов не существовало. Эдвин умер в 1953 году, в ходе научных изысканий. В течение нескольких ночей он наблюдал внегалактические объекты.

Его последняя честолюбивая мечта осталась несбывшейся. Но ученый наверняка бы порадовался тому, что в его честь назван космический телескоп. И поколения братьев по разуму продолжают исследовать огромное и чудесное пространство. Оно до сих пор таит немало загадок. Сколько открытий впереди! И производные постоянные Хаббла, наверняка, помогут кому-то из молодых ученых стать «Коперником №3».

Оспаривая Аристотеля

Что будет доказано или опровергнуто, как тогда, когда в пух и прах полетела теория о бесконечности, вечности и неизменности пространства вокруг Земли, которую поддерживал сам Аристотель? Он приписывал Вселенной симметрию и совершенство. Космологический принцип подтвердил: все течет, все изменяется.

Есть мнение, что через миллиарды лет небеса будут пусты и темны. Расширение «унесет» галактики за космический горизонт, откуда свет не сможет дойти до нас. Будет ли актуальна постоянная Хаббла для пустой Вселенной? Что станет с наукой космологией? Она исчезнет? Все это предположения.

Красное смещение

Пока же телескоп «Хаббл» сделал снимок, который свидетельствует: до вселенской пустоты нам пока далеко. В профессиональной среде в ходу мнение, что ценно открытие Эдвина Хаббла, но не его закон. Однако именно он был почти сразу признан в научных кругах того времени. Наблюдения «красного смещения» не просто завоевало право на существование, оно актуально и в XXI веке.

И сегодня, определяя расстояние до галактик, опираются на супероткрытие ученого. Оптимисты утверждают: даже если наша галактика останется единственной, «скучать» нам не придется. Будут существовать миллиарды карликовых звезд и планет. А значит, рядом с нами по-прежнему будут «параллельные миры», которые нужно будет исследовать.

Великим физикам прошлого И. Ньютону и А. Эйнштейну Вселенная представлялась статичной. Советский физик А. Фридман в 1924 г. выступил с теорией «разбегающихся» галактик. Фридман предсказал расширение Вселенной. Это было революционным переворотом в физическом представлении о нашем мире.

Американский астроном Эдвин Хаббл исследовал туманность Андромеды. К 1923 году ему удалось рассмотреть, что ее окраины представляют собой скопления отдельных звезд. Хаббл рассчитал расстояние до туманности. У него оказалось – 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние составляет 2,3 миллиона световых лет). То есть туманность находится далеко за пределами Млечного Пути – Нашей Галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к выводу о структуре Вселенной.

Вселенная состоит из набора огромных звездных скоплений – галактик .

Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем.

Э. Хаббл подметил важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько больше длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера.

Все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик с измерениями скоростей их удаления (по красному смещению).

Математически закон формулируется очень просто:

где v – скорость удаления галактики от нас,

r – расстояние до нее,

H – постоянная Хаббла.

И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, все более удаленных от Млечного Пути галактик видимой Вселенной, из-под действия этого закона не выпадает.

Итак, главное следствие закона Хаббла:

Вселенная расширяется.

Расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной.

4. Теория Большого Взрыва

Из экспериментального факта разбегания галактик был оценен возраст Вселенной. Он оказался равным – около 15 миллиардов лет! Так началась эпоха современной космологии.

Естественно возникает вопрос: а что было в начале? Всего около 20 лет понадобилось ученым, чтобы вновь полностью перевернуть представления о Вселенной.

Ответ предложил выдающийся физик Г. Гамов (1904 – 1968) в 40-ые годы. История нашего мира началась с Большого взрыва. Именно так думает большинство астрофизиков и cегодня.

Большой взрыв – это стремительное падение изначально огромной плотности, температуры и давления вещества, сконцентрированного в очень малом объеме Вселенной. Все вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме.

Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва.

Более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется.

Согласно теории Большого взрыва, ранняя Вселенная состояла из фотонов, электронов и других частиц. Фотоны постоянно взаимодействовали с остальными частицами. По мере расширения Вселенной, она остывала, и на определенном этапе электроны стали соединяться с ядрами водорода и гелия и образовывать атомы. Это случилось при температуре около 3000 К и примерном возрасте Вселенной 400 000 лет. С этого момента фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Но нам остались «свидетели» той эпохи – это реликтовые фотоны. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно ее заполняет. В результате дальнейшего остывания излучения его температура снизилась и сейчас составляет около 3 К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Оно рассматривается как одно из главных подтверждений теории Большого взрыва.

print

В статье от 23/05/2013 «Новый взгляд на природу темной энергии (ТЭ) в следствиях ОТО» была предложена версия о глобальном влиянии гравитации космоса на закон Хаббла, в виде поправки на дополнительное синее гравитационное смещение спектра излучения далеких галактик (интерпретация под ТЭ). Это новое направление в исследовании ТЭ, которое неожиданно нашло теоретическое подтверждение, поэтому версия имеет продолжение.

Обратимся к работе Я.Зельдовича и И.Новикова «Строение и эволюция Вселенной» , в главе 3.5. – уравнение (10) рассматривается формула полного закона Хаббла, с учетом синего гравитационного смещения, и комментарии к ней в главе 3.12. стр.123-124, приведем её в более удобной форме:

1+ Z хаббл (R) - 2/3 πρ м GR 2 / С 2 = ν(R)/ ν о , (1)

Где: ρ м - критическая плотность вещества во Вселенной, Z хаббл – космологическое красное смещение, ν(R) – наблюдаемая частота,ν о – истинная частота.

Уравнение (1) интересно своим содержанием, в него входит константа 2/3 πρ м G , назовем её константой гравитационного смещения Λ грав , которая по форме записи аналогична космологической константе Эйнштейна Λ эйнш =4/3 πρ м G в первоначальном варианте . В космологии Λ эйнш связывают с ТЭ, вот чем уникальна формула (1), в ней изначально теоретически был заложен эффект под интерпретацию ТЭ, но это был 1975г.

Проведем анализ уравнения (1), константа Λ грав вытекает из решений Пуассона, для сферически-симметричной однородной Вселенной,

ƒ(R) - ƒ(0) =∆ƒ = 2/3 πρ м GR 2 , (2)

где: ƒ – ньютоновский гравитационный потенциал (ГП).

И показывает, как формируется ГП Вселенной, из уравнения (2) следует, что основной вклад в формирование ГП вносят далекие массы, для гравитационно-связанной (видимой) части Вселенной радиусом R всел (t)= C∆ t (где t – возраст Вселенной). В уравнениях Фридмана произведение ρ э R 2 всел является константой по всей стреле времени, а это означает, что ГП во всех точках Вселенной и по всей стреле времени является константой, подставив современные значения параметров Вселенной в уравнение (2) мы получаем,

∆ƒ = 2/3 πρ м GR 2 =0.75*3.14*9.6*10 -26 *6.7*10 -11 *1.7*10 52 =3*10 16 ≈С 2

примерно равен скорости света в квадрате. Тогда параметр R в уравнении (2) приобретает конкретное значение, как радиус видимой части Вселенной, и применять произвольно расстояния для вычисления ГП недопустимо, он везде одинаков.

Возникает вопрос, о каком синем гравитационном смещении спектра излучения идет речь в уравнении (1), если гравитационное поле Вселенной глобально однородно, именно по этой причине поправка на синее гравитационное смещение - 2/3 πρ м GR 2 / С 2 в космологии не рассматривается. С другой стороны, простота, а главное естественность объяснения природы ТЭ вполне логичны и предельно привлекательны, возможно поправка Зельдовича- Новикова связана с вопросом: подчиняется ли гравитация (как вид энергии) закону космологического красного смещения Хаббла , обратимся к теории инфляции.

Одним из ключевых и непременным условием теории инфляции, являются нулевые энергетические условия происхождения и в дальнейшем развития Вселенной, отрицательная энергия гравитации космоса, строго равна положительной энергии всего вещества и излучения. И этот энергетический баланс должен соблюдаться по всей стреле времени, ОТО этим условиям не противоречат, более того они в какой-то мере вытекают из ОТО, конкретно.

1. Равенство гравитационной и инертной массы

Эта аксиома позволяет формально записать нулевые условия в виде

М всел С 2 + М всел ∆ƒ=0

Где: М всел С 2 - полная энергия всего вещества и излучения; М всел ∆ƒ – гравитационная энергия всей Вселенной.

Из уравнения следует, что ∆ƒ= -С 2 , вопрос как формируется ∆ƒ , рассматривается далее.

2. Гравитация не имеет экранов и носит накопительный характер.

ГП для конкретной точки формируется за счет наложения (накопления) ГП от источников гравитации по всему объему Вселенной и в принципе позволяет достичь ГП= -С 2 .

3. Скорость распространения гравитации равна скорости света

Это условие позволяет ограничить область формирования ГП, областью видимой части Вселенной, в противном случае ГП стремиться к бесконечности.

4. Энергия в ОТО гравитирует

Это следствие из ОТО позволяет ответить на вопрос: подчиняется ли гравитация (как вид энергии) закону космологического красного смещения Хаббла.

Энергия в ОТО гравитирует, поэтому все расчеты в современной космологии ведутся через плотность энергии, так удобнее и проще. Вот и мы, упростим задачу и в качестве наблюдателя, проведем анализ параметров ранней Вселенной, когда доминировало излучение, источником гравитации однозначно становится излучение (веществом и темной материей можно пренебречь). Вселенная расширяется с замедлением, тогда энергия квантов приходящих к наблюдателю, согласно закону Хаббла, падает пропорционально расстоянию и для границ видимой части Вселенной, стремится к нулю. Раз энергия источников гравитации стремится к нулю, то в таком же порядке должна уменьшаться энергия гравитации от этих источников, если за горизонтом частиц мы не видим материю, то однозначно, мы не видим и гравитацию, например: если ГП наблюдателя равен –С 2 , то по стреле времени назад ГП, как и энергия квантов, должен стремиться к нулю. Только таким образом соблюдается нулевые энергетические условия.

На основании вышеизложенного, произведем расчеты, у нас есть закон Хаббла

V(R)= HR ,

где: V(R) – скорость Хаббловского расширения пропорциональная расстоянию R .

Возведем обе части его в квадрат,

V 2 (R)= H 2 R 2 , (3)

из WIKI возьмем современное значение критической плотности вещества

ρ м =3Н 2 /8πG ,

из которого следует

Н 2 = 8/3 πρ м G ,

подставим его в уравнение (3)

V 2 (R)= 8/3 πρ м G R 2 .

Мы в праве считать, что изменение скорости расширения, связано с гравитацией космоса, ГП наблюдателя всегда и везде равен –С 2 , и меняется согласно закону Хаббловского расширения как –С 2 + V 2 (R) .

тогда разность ГП составит,

∆ƒ = –С 2 – (-С 2 + V 2 (R)) = - V 2 (R) = 8/3 πρ м G R 2 , (4)

сравним его с уравнением Пуассона

∆ƒ = 2/3 πρ м G R 2 . (2)

Мы видим что, по форме физического содержания уравнения (2) и (4) идентичны, закон Хаббла (в квадрате) однозначен, вытекает из наблюдений и показывает, как формируется ГП по всей стреле времени, при этом оставаясь в каждой точке Вселенной одинаковым. И у нас появляются основания считать, что уравнение (4) это есть закон Хаббла для гравитационного поля Вселенной. Тогда излучение, распространяющееся в гравитирующей Вселенной, должно подвергаться, согласно ОТО, дополнительному гравитационному смещению, т.к. тормозное ускорение всегда направленно к наблюдателю, то смещение должно быть синим, тогда закон Хаббла (1) приобретает вид,

1+ Z хаббл (R) - V 2 (R)/ С 2 = ν(R)/ ν о (5)

Посмотрите внимательно, насколько полно уравнение (5) описывает, и как следствие, объясняет диаграммы Хаббла рис1, на основании которых была открыта ТЭ.

Где красная линия – зависимость расстояний от красного смещения спектра галактик, построенная по наблюдениям сверхновых типа Iа, что соответствует ускоренному расширению Вселенной (Z набл ). Синяя (пунктирная) линия соответствует теоретическим расчетам для линейного расширения Вселенной (Z теор ), тогда разница между,

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца -- точнее, до самого начала, -- понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • · Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы ), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • · Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв ) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • · Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель ), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории ). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная ).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10- 35 секунды после рождения Вселенной (только задумайтесь -- это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной -- явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Тот, кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное -- скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10- 32 секунды Вселенная расширилась на 50 порядков -- была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное -- по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10- 35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Инфляционная гипотеза не снимает проблемы антивещества , но эту проблему можно объяснить, обратившись к другим процессам, происходившим в то же время. Обнаруживаются интересные вещи: при бурном образовании элементарных частиц в ранней Вселенной примерно на 100 000 001 обычных частиц пришлось 100 000 000 античастиц. В следующую долю секунды частицы и античастицы, объединившись в пары, аннигилировали друг друга с гигантским выбросом энергии -- масса превратилась в излучение. После такой «прополки» во Вселенной остался лишь жалкий клочок обычной материи. Вот из этого «космического мусора» и состоит вся известная нам сегодня Вселенная.

Вернувшись с первой мировой войны, Эдвин Хаббл устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной.

Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему -- природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными -- и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся -- в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось.

Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период--светимость определяют и количество испускаемого ею света.

Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы -- скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения).

Первое, что сделал Хаббл, -- рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды, как ее теперь называют, составляет 2,3 миллиона световых лет. -- Прим. автора ) -- то есть туманность находится далеко за пределами Млечного Пути -- нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений -- галактик . Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще-то, хватило бы Хабблу для всемирного признания его заслуг перед наукой.

Ученый, однако, этим не ограничился и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера , а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто:

где v -- скорость удаления галактики от нас,

r -- расстояние до нее, а

H -- так называемая постоянная Хаббла .

Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, -- со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает.

Итак, главное и -- казалось бы -- невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики -- изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного -- если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же. Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной».

Однако закон Хаббла подсказывает нам и еще кое-что о природе Вселенной -- и это «кое-что» является вещью просто-таки экстраординарной. У Вселенной было начало во времени. И это весьма несложное умозаключение: достаточно взять и мысленно «прокрутить назад» условную кинокартину наблюдаемого нами расширения Вселенной -- и мы дойдем до точки, когда всё вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме. Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва , и более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется. Закон Хаббла, кстати, помогает также оценить возраст Вселенной (конечно, весьма упрощенно и приблизительно). Предположим, что все галактики с самого начала удалялись от нас с той же скоростью v , которую мы наблюдаем сегодня. Пусть t -- время, прошедшее с начала их разлета. Это и будет возраст Вселенной, и определяется он соотношениями:

v x t = r, или t = r /V

Но ведь из закона Хаббла следует, что

r /v = 1/H

где Н -- постоянная Хаббла. Значит, измерив скорости удаления внешних галактик и экспериментально определив Н , мы тем самым получаем и оценку времени, в течение которого галактики разбегаются. Это и есть предполагаемое время существования Вселенной. Постарайтесь запомнить: по самым последним оценкам, возраст нашей Вселенной составляет около 15 миллиардов лет, плюс-минус несколько миллиардов лет. (Для сравнения: возраст Земли оценивается в 4,5 миллиардов лет, а жизнь на ней зародилась около 4 миллиардов лет назад.) Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее.

gastroguru © 2017