Под классической теории упругости понимается. Общие сведения о теории упругости

Российский государственный университет

нефти и газа им. И.М.Губкина

Кафедра технической механики

РЕФЕРАТ

«Теория упругости»

Выполнил: Поляков А. А.

Проверил: Евдокимов А.П.

Москва 2011

теория упругость уравнение

1. Введение

Теория напряженно-деформированного состояния в точке тела

2.1 Теория напряжений

2 Теория деформаций

3 Связь между напряженным и деформированным состоянием для упругих тел

Основные уравнения теории упругости. Типы задач теории упругости

1 Основные уравнения теории упругости

2 Типы задач теории упругости

4 Уравнения теории упругости в перемещениях(уравнения Ламе)

Вариационные принципы теории упругости

1 Принцип возможных перемещений (принцип Лагранжа)

2 Принцип возможных состояний (принцип Кастильяно)

3 Соотношение между точным решением и решениями, получаемыми на основе принципов Лагранжа и Кастильяно

Список использованной литературы

1. Введение

Теории напряжений и деформаций были созданы О. Коши. Они изложены в работе, представленной в Парижскую академию наук в 1822 г., краткое содержание которой опубликовано в 1823 г. и ряде последующих статей. О.Коши вывел три уравнения равновесия элементарного четырехгранника, доказал закон парности касательных напряжений, ввел понятия главных осей и главных напряжений и вывел дифференциальные уравнения равновесия (обычно они в курсе сопротивления материалов не выводятся). Им же введена поверхность нормальных напряжений (квадрика Коши), на которой располагаются концы радиус-векторов, направления которых совпадают с направлением нормалей к площадкам, а величина обратно пропорциональна корню квадратному из абсолютной величины нормального напряжения в этой площадке, и доказано, что эта поверхность является поверхностью второго порядка с центром в начале координат. Возможность преобразования поверхности нормальных напряжений к главным осям свидетельствует о существовании в каждой точке трех взаимно главных перпендикулярных площадок.

Аналогичная поверхность касательных напряжений была введена русским механиком Г.В. Колосовым в 1933 г.

Геометрическая интерпретация напряженного состояния в пространстве в виде эллипсоида напряжений была дана Г. Ламе и Б. Клапейроном в их мемуарах, представленных в Парижскую академию наук в 1828 г. и опубликованных в 1833 г.

Геометрическое изображение напряженного состояния на плоскости для одной серии площадок, проходящих через главную ось, в виде окружности напряжений было предложено К. Кульманом в его книге в 1866 г.

Для общего случая напряженного состояния очень наглядная геометрическая интерпретация его на плоскости дана О. Мором (так называемая круговая диаграмма Мора) в 1882 г. Из нее можно сделать ряд важных заключений об экстремальности главных напряжений, положении площадок, в которых касательные напряжения максимальны, и о величинах этих максимальных касательных напряжений.

О.Коши дал определение деформаций, вывел зависимость их от перемещений в частном случае малых деформаций (эти зависимости, как правило, в курсе сопротивления материалов не выводятся), определил понятия главных напряжений и главных деформаций и получил зависимости компонентов напряжений от компонентов деформаций, как для изотропного, так и для анизотропного упругого тела. В сопротивлении материалов обычно устанавливаются зависимости компонентов деформаций от компонентов напряжений для изотропного тела. Они называются обобщенным законом Гука, хотя, конечно, это название условно, так, как Р. Гуку понятие напряжения известно, не было.

В указанных зависимостях Коши вначале ввел две постоянных и записал зависимости напряжений от деформаций в виде

m, ,

Однако в дальнейшем О.Коши принял концепцию Л. Навье. Согласно ей упругие тела состоят из молекул, между которыми при деформировании возникают силы, действующие по направлениям прямых линий, соединяющих молекулы, и пропорциональные изменению расстояний между молекулами. Тогда число упругих постоянных для общего случая анизотропного тела равно 15, а для тела изотропного получаем одну упругую постоянную. Этой гипотезы придерживался С. Пуассон, а вначале - Г. Ламе и Б. Клапейрон. На основании ее Пуассон установил, что коэффициент поперечной деформации равен 1/4.

Д. Грин в 1839 г. вывел зависимость между деформациями и напряжениями без использования гипотезы о молекулярном строении упругих тел. Он получил их на основе принципа сохранения энергии, введя понятие упругого потенциала, и показал, что при использовании линейных зависимостей шести компонентов деформаций от шести компонентов напряжений из 36 коэффициентов независимыми являются 21, т.е.в общем случае анизотропного тела число упругих постоянных равно 21. Для изотропного тела число упругих постоянных снижается до двух. Теория, в которой число упругих постоянных для анизотропного тела равно 15, а для изотропного 1, иногда называлась «рариконстантной» или «униконстантной», а теория, в которой число упругих постоянных для анизотропного тела равно 21, а для изотропного 2 - «мультиконстантной».

Спор между сторонниками этих теорий побудил физиков к экспериментальным исследованиям.

Г. Вертгейм на основании замеров внутренних объемов стеклянных и металлических труб при осевом растяжении установил в 1848 г., что коэффициент поперечной деформации не равен 1/4. Он считал его различным для различных материалов, но для многих материалов близким к 1/3.

А.Я. Купфер, испытывая в 1853 г. на растяжение и кручение, металлические стержни, также получил, что отношение модулей при сдвиге и растяжении не соответствует величине поперечной деформации, равной 1/4.

Ф. Нейманн испытывал в 1855 г. на изгиб образцы прямоугольного поперечного сечения и измерял при этом углы поворота двух граней балки, (перечное сечение принимает трапецеидальную форму). В результате он показал, что коэффициент поперечной деформации не равен 1/4. К такому же выводу пришел Г. Кирхгоф, ученик Ф.Неймана, на основании проведенных в 1859 г. испытаний на совместный изгиб и кручение круглых латунных стержней, заделанных одним концом и нагруженных на другом сосредоточенной силой, с замером угла закручивания стержня и угла поворота сечения.

Большое экспериментальное исследование коэффициентов поперечной деформации для различных сортов стали, провел один из учеников Г.Кирхгофа М.Ф. Окатов в 1865 - 1866 гг. Результаты приведены в его докторской диссертации.Испытания на кручение и изгиб тонких призм, вырезанных из монокристаллов, а также испытания сжимаемости кристаллов при всестороннем равном сжатии были проведены В.Фойгтом и описаны в его многочисленных статьях, объединенных в дальнейшем в книге, опубликованной в 1910 г. Они подтвердили правильность мультиконстантной теории.

Глубокое исследование математической структуры закона Гука для анизотропных тел было проведено механиком и инженером Яном Рыхлевским в 1984 г. на основе введенного им понятия собственного упругого состояния. В частности, им показано, что 21 упругая постоянная представляет собой шесть истинных модулей жесткости, 12 дистрибуторов жесткости и три угла.

2. Теория напряженно-деформированного состояния в точке тела

1 Теория напряжений

Внутренние силовые факторы, возникающие при нагружении упругого тела, характеризуют состояние того или иного сечения тела, но не дают ответа на вопрос о том, какая именно точка поперечного сечения является наиболее нагруженной, или, как говорят, опасной точкой. Поэтому необходимо ввести в рассмотрение какую-то дополнительную величину, характеризующую состояние тела в данной точке.

Если тело, к которому приложены внешние силы, находится в равновесии, то в любом его сечении возникают внутренние силы сопротивления. Обозначим через внутреннее усилие, действующее на элементарную площадку , а нормаль к этой площадке через тогда величина

называется полным напряжением.

В общем случае полное напряжение не совпадает по направлению с нормалью к элементарной площадке, поэтому удобнее оперировать его составляющими вдоль координатных осей -

Если внешняя нормаль совпадает с какой-либо координатной осью, например, с осью Х, то составляющие напряжения примут вид при этом составляющая оказывается перпендикулярной сечению и называется нормальным напряжением, а составляющие будут лежать в плоскости сечения и называются касательными напряжениями.

Чтобы легко различать нормальные и касательные напряжения обычно применяют другие обозначения: - нормальное напряжение, - касательное.

Выделим из тела, находящегося под действием внешних сил, бесконечно малый параллелепипед, грани которого параллельны координатным плоскостям, а ребра имеют длину . На каждой грани такого элементарного параллелепипеда действуют по три составляющие напряжения, параллельные координатным осям. Всего на шести гранях получим 18 составляющих напряжений.

Нормальные напряжения обозначаются в виде , где индекс обозначает нормаль к соответствующей грани (т.е. может принимать значения ). Касательные напряжения имеют вид ; здесь первый индекс соответствует нормали к той площадке, на которой действует данное касательное напряжение, а второй указывает ось, параллельно которой это напряжение направлено (рис.1).

Рис.1. Нормальные и касательные напряжения

Для этих напряжений принято следующее правило знаков. Нормальное напряжение считается положительным при растяжении, или, что то же самое, когда оно совпадает с направлением внешней нормали к площадке, на которой действует. Касательное напряжение считается положительным, если на площадке, нормаль к которой совпадает с направлением параллельной ей координатной оси, оно направлено в сторону соответствующей этому напряжению положительной координатной оси.

Составляющие напряжений являются функциями трех координат. Например, нормальное напряжение в точке с координатами можно обозначать

В точке, которая отстоит от рассматриваемой на бесконечно малом расстоянии, напряжение с точностью до бесконечно малых первого порядка можно разложить в ряд Тейлора:


Для площадок, которые параллельны плоскости изменяется только координата х, а приращения Поэтому на грани параллелепипеда, совпадающей с плоскостью нормальное напряжение будет , а на параллельной грани, отстоящей на бесконечно малом расстоянии , - Напряжения на остальных параллельных гранях параллелепипеда связаны аналогичным образом. Следовательно, из 18 составляющих напряжения неизвестными являются только девять.

В теории упругости доказывается закон парности касательных напряжений, согласно которому по двум взаимно перпендикулярным площадкам составляющие касательных напряжений, перпендикулярные линии пересечения этих площадок, равны друг другу:

Равенства (2) приводят к тому, что из девяти составляющих напряжений, характеризующих напряженное состояние в точке тела, остаются только шесть:

Можно показать, что напряжения (3) не просто характеризуют напряженное состояние тела в данной точке, но определяют его однозначно. Совокупность этих напряжений образует симметричную матрицу, которая называется тензором напряжений:

(4)

При умножении тензора на скалярную величину получится новый тензор, все компоненты которого в раз больше компонентов исходного тензора.

2 Теория деформаций

Под действием внешних нагрузок упругое тело изменяет свою форму, деформируется. При этом точки тела принимают какое-то новое положение. Для определения деформации упругого тела сравним положения точек тела до и после приложения нагрузки.

Рассмотрим точку ненагруженного тела и ее новое положение после приложения нагрузки. Вектор называется вектором перемещения точки (рис.2).

Рис.2. Вектор перемещения точки

Возможны два вида перемещений: перемещение всего тела как единого целого без деформирования - такие перемещения изучает теоретическая механика как перемещения абсолютно твердого тела, и перемещение, связанное с деформацией тела - такие перемещения изучает теория упругости.

Обозначим проекции вектора перемещения точки на координатные оси через соответственно. Они равны разности соответствующих координат точек и :

и являются функциями координат:

Деформирование тела вызвано разницей в перемещениях различных его точек. Бесконечно малый параллелепипед с ребрами вырезанный из упругого тела около произвольной точки , вследствие различных перемещений его точек деформируется таким образом, что изменяется длина его ребер и искажаются первоначально прямые углы между гранями.

На рис.3.3 показаны два ребра этого параллелепипеда: и длина ребра равна а ребра -

После деформации точки принимают положение При этом точка получит перемещение, составляющие которого в плоскости чертежа равны и Точка отстоящая от точки на бесконечно малом расстоянии получит перемещение, составляющие которого будут отличаться от составляющих перемещения точки на бесконечно малую величину за счет изменения координаты

Рис.3. Линейные и угловые деформации

Составляющие перемещения точки будут отличаться от составляющих перемещения точки на бесконечно малую величину за счет изменения координаты


Длина проекции ребра на ось после деформации:

Проекция абсолютного удлинения ребра на ось


Относительное удлинение вдоль оси

(6)

называется линейной деформацией по направлению оси .

Аналогично определяются линейные деформации по направлениям осей и

(7)

Рассмотрим изменение углов между ребрами параллелепипеда (рис.3). Тангенс угла поворота ребра в плоскости


Вследствие малости деформаций а линейной деформацией можно пренебречь ввиду ее малости по сравнению с единицей, и тогда

Аналогичным образом можно определить угол поворота ребра в той же плоскости:

Искажение прямого угла называется угловой деформацией и определяется как сумма углов поворота ребер и :

(8)

Таким же образом определяются угловые деформации в двух других координатных плоскостях:

(9)

Формулы (6)-(9) дают шесть основных зависимостей для линейных и угловых деформаций от составляющих перемещения. Эти зависимости называются уравнениями Коши:

(10)

В пределе, когда длины ребер параллелепипеда стремятся к нулю, соотношения Коши определяют линейные и угловые деформации в окрестности точки

Положительным линейным деформациям соответствуют удлинения, а отрицательным - укорочения. Угол сдвига считается положительным при уменьшении угла между положительными направлениями соответствующих координатных осей и отрицательным - в противном случае.

Аналогично тензору напряжений, деформированное состояние тела в данной точке описывается тензором деформаций

(11)

Как и тензор напряжений, тензор деформаций является симметричной матрицей, которая содержит девять компонентов, шесть из которых являются различными.

2.3 Связь между напряженным и деформированным состоянием для упругих тел

Зависимости между напряжениями и деформациями носят физический характер. Ограничиваясь малыми деформациями, связь между напряжениями и деформациями можно считать линейной.

При испытании стержня на растяжение (о механических испытаниях материалов будет подробно рассказано в следующем разделе) установлена пропорциональная зависимость между нормальным напряжением и линейной деформацией в одном направлении, которая называется законом Гука:

где упругая постоянная называется модулем продольной упругости.

Тем же экспериментальным путем установлена связь между линейными деформациями в продольном и поперечном направлениях:

где - линейная деформация в поперечном направлении, - вторая упругая постоянная, называемая коэффициентом Пуассона.

При механических испытаниях на чистый сдвиг установлена прямо пропорциональная зависимость между касательным напряжением и угловой деформацией в плоскости действия этого напряжения, которая получила название закона Гука при сдвиге:

где величина является третьей упругой постоянной и называется модулем сдвига. Однако эта упругая постоянная не является независимой, т.к. связана с первыми двумя зависимостью

Чтобы установить зависимости между деформациями и напряжениями, выделим из тела бесконечно малый параллелепипед (рис.1) и рассмотрим действие только нормальных напряжений Разницей напряжений на противоположных гранях параллелепипеда можно пренебречь, т.к. она приводит к деформациям более высокого порядка малости.

Определим удлинение ребра параллельного напряжению При действии этого напряжения согласно закону Гука (3.12) произойдет относительное удлинение ребра

Напряжение вызывает аналогичное удлинение в направлении, перпендикулярном ребру

а в направлении ребра - укорочение, которое согласно (13) составляет

или, с учетом выражения деформации

Аналогично определяется относительное укорочение ребра при действии напряжения

На основании принципа независимости действия сил полное относительное удлинение ребра можно определить как сумму удлинений от действия каждого напряжения:



Аналогично можно определить линейные деформации по направлениям двух других осей:



В соответствии с законом Гука при сдвиге (14) связь между угловыми деформациями и касательными напряжениями можно представить независимо для каждой из трех плоскостей, параллельных координатным плоскостям:

Таким образом, получены шесть формул, которые выражают линейную зависимость между составляющими деформации и напряжений в изотропном упругом теле и называются обобщенным законом Гука:

(16)

3. Основные уравнения теории упругости. Типы задач теории упругости

Основная задача теории упругости - определение напряженно-деформированного состояния по заданным условиям нагружения и закрепления тела.

Напряженно-деформированное состояние определено, если найдены компоненты тензора напряжений {s} и вектора перемещений , девять функций.

3.1 Основные уравнения теории упругости

Для того, чтобы найти эти девять функций надо записать основные уравнения теории упругости, или:

Дифференциальные Коши

(17)

где - компоненты тензора линейной части деформаций Коши;

компоненты тензора производной перемещения по радиусу.

Дифференциальные уравнения равновесия

где - компоненты тензора напряжений; - проекция объемной силы на ось j.

Закон Гука для линейно-упругого изотропного тела

где - константы Ламе; для изотропного тела. Здесь - нормальные и касательные напряжения; деформации и углы сдвига соответственно.

Вышеперечисленные уравнения должны удовлетворять зависимостям Сен-Венана

В теории упругости задача решена, если выполняются все основные уравнения.

2 Типы задач теории упругости

Граничные условия на поверхности тела должны выполняться и в зависимости от типа граничных условий различают три типа задач теории упругости.

Первый тип. На поверхности тела заданы силы. Граничные условия

Второй тип. Задачи, в которых на поверхности тела задано перемещение. Граничные условия

Третий тип. Смешанные задачи теории упругости. На части поверхности тела заданы силы, на части поверхности тела задано перемещение. Граничные условия

Задачи, в которых на поверхности тела заданы силы или перемещения, а требуется найти напряженно-деформированное состояние внутри тела и то, что не задано на поверхности, называют прямыми задачами. Если же внутри тела заданы напряжения, деформации, перемещения и т.д., а требуется определить то, что не задано внутри тела, а также перемещения и напряжения на поверхности тела (то есть найти причины, вызвавшие такое напряженно-деформированное состояние)), то такие задачи называются обратными.

4 Уравнения теории упругости в перемещениях (уравнения Ламе)

Для определения уравнений теории упругости в перемещениях запишем: дифференциальные уравнения равновесия (18) закон Гука для линейно-упругого изотропного тела (19)


Если учесть, что деформации выражаются через перемещения (17), запишем:

Следует также напомнить, что угол сдвига связан с перемещениями следующим соотношением (17):

(23)

Подставив в первое уравнение равенств (19) выражение (22), получим, что нормальные напряжения

(24)

Отметим, что запись иц в данном случае не подразумевает суммирования по i.

Подставив во второе уравнение равенств (19) выражение (23), получим, что касательные напряжения

(25)

Запишем уравнения равновесия (18) в развернутом виде для j = 1

(26)

Подставив в уравнение (26) выражения для нормальных (24) и касательных (25) напряжений, получим

где λ- константа Ламе, которая определяется по выражению:

Подставим выражение (28) в уравнение (27) и запишем,

где определяется по выражению (22), или в развернутом виде

Разделим выражение (29) на G и приведем подобные слагаемые и получим первое уравнение Ламе:

(30)

где - оператор Лапласа (гармонический оператор), который определятся как

(31)

Аналогично можно получить:

(32)

Уравнения (30) и (32) можно записать в следующем виде:

(33)

Уравнения (33) или (30) и (32) являются уравнениями Ламе. Если объемные силы равны нулю или постоянны, то

(34)

причем запись в данном случае не подразумевает суммирования по i. Здесь

Можно показать, что такое представление перемещений через гармоническую функцию обращает в тождество уравнения Ламе (33). Часто их называют условиями Попковича-Гродского. Четыре гармонические функции не обязательны, ведь ф0 можно приравнять нулю.

4. Вариационные принципы Теории упругости.

1 Принцип возможных перемещений (принцип Лагранжа)

Принцип Лагранжа. Для тела, находящегося в равновесии, работа внешних и внутренних сил на любых возможных бесконечно малых приращениях перемещений равна нулю.

Используя теорему Клапейрона,что для упругодеформированного тела варьируя перемещением, получаем принцип Лагранжа

Возможными в механике деформируемых тел называют такие перемещения, которые удовлетворяют внешним и внутренним связям, наложенным на тело.

Внешние связи - это условия закрепления, внутренние связи - условие сплошности.

Чтобы удовлетворить внутренним связям, надо, чтобы приращения перемещений были непрерывными однозначными функциями координат.

В такой форме принцип Лагранжа справедлив для любых деформируемых тел.

Для упругих тел было получено, что

(41)

Тогда (40) с учетом (41) запишется как

(42)

где W - удельная деформация, а

Здесь U - вариация всей потенциальной энергии тела.

Подставим в (42) выражение (43), и, поскольку силы не варьируются, запишем, что

(44)

Уравнение (44) является вариационным уравнением Лагранжа.

Если силы консервативны, то первые два интеграла представляют собой изменение потенциала внешних сил при переходе из недеформирован-ного состояния в деформированное.

Потенциал внешних сил

(45)

где - возможная работа внешних сил при переходе из недеформирован-ного в деформированное состояние вычислена в предположении, что внешние силы остаются неизменными. Полная энергия системы

Тогда с учетом выражений (44) - (46) принцип Лагранжа запишется:

то есть вариация полной энергии системы в положении равновесия на возможных перемещениях равна нулю. Выражение (47) является вариационным уравнением Лагранжа в случае действия только консервативных сил.

В положении устойчивого равновесия полная энергия П минимальна,

Принцип Лагранжа - принцип минимальной энергии.

2 Принцип возможных состояний (принцип Кастильяно)

Будем называть возможными состояниями такие, которые находятся в соответствии с внешними и внутренними силами, то есть удовлетворяющие уравнениям равновесия.

Уравнение (57) записывает Принцип Кастильяно. При возможных изменениях напряженного состояния тела вариация равна интегралу по той части поверхности тела, на которой заданы перемещения от произведений возможных поверхностных сил на перемещения.

3 Соотношение между точным решением и решениями, получаемыми на основе принципов Лагранжа и Кастильяно

На основе принципа Лагранжа, выбирая какие-то функции, или их набор, и так как набор функций ограниченный, то получаем меньшее число степеней свободы системы, таким образом, уменьшаем и степени свободы конструкции. То есть в энергетическом смысле решение получается жестче, чем точное.

Если брать интегральные характеристики, то приближенное решение более жестко интегрально.

При решении задачи о нагружении шарнирно опертой балки поперечной силой в середине пролета (рис. 1), то приближенное решение даст меньшее перемещение под силой, чем при точном решении.

точное решение

При решении той же задачи при помощи вариационного принципа Кастильяно, так как не выполняется условие сплошности, система получает большую свободу, чем в действительности.

Точное решение находится между этим двумя приближенными способами (Лагранжа и Кастильяно). Иногда разница между полученными решениями невелика.

5. Список использованной литературы

1. Александров А.В., Потапов В.Д. Основы теории упругости и пластичности. 400 стр.Высшая школа.1990г.

2. Веретимус Д.К. Основы теории упругости.Часть I.Теория напряжений.Методическое пособие по курсу «Основы теории упругости и пластичности». 2005.-37с.

Веретимус Д.К. Основы теории упругости.Часть II .Теория деформаций. Связь между напряженным и деформированным состоянием.Методическое пособие по курсу «Основы теории упругости и пластичности»,2005.-53с.

Веретимус Д.К. Основы теории упругости.Часть III .Основные уравнения теории упругости.Типы задач теории упругости.Методическое пособие по курсу «Основы теории упругости и пластичности»,2005.-45с.

Созданию теории упругости и пластичности как самостоятельного раздела механики предшествовали работы ученых XVII и XVIII вв, Еще в начале XVII в. Г. Галилей (1564-1642) сделал попытку решить задачи о растяжении и изгибе бруса. Он был одним из первых, кто попытался применить расчеты к инженерно-строительным задачам.

Теорией изгиба тонких упругих стержней занимались такие выдаю­щиеся ученые, как Э. Мариотт, Я. Бернулли-старший, Ш.О. Кулон, Л. Эйлер, причем становление теории упругости как науки можно свя­зать с работами Р. Гуна, Т. Юнга, Ж.Л. Лагранжа, С. Жермен.

Роберт Гук (1635-1703) положил начало механике упругих тел, опубликовав в 1678 r . работу, в которой описал установленный им за кон пропорциональности между нагрузкой и деформацией при растя­жении. Томас Юнг (1773-1829) в самом начале XIX в. ввел понятие модуля упругости при растяжении и сжатии. Он установил также раз­личие между деформацией растяжения или сжатия и деформацией сдви­га. К этому же времени относятся работы Жозефа Луи Лагранжа (1736-1813) и Софи Жермен (1776-1831). Они нашли решение задачи об изгибе и колебаниях упругих пластинок. В дальнейшем теорию пластинок усовершенствовали С. Пуассон и 781-1840) и Л. Навье (1785-1836).

Так, к концу XVIII и началу XIX вв. были заложены основы со­противления материалов и создана почва для возникновения теории упругости. Быстрое развитие техники ставило перед математикой огромное количество практических задач, что и привело к быстрому развитию теории. Одной из многих важных проблем была проблема ис­следования свойств упругих материалов. Решение этой проблемы да­вало возможность более глубоко и полно изучить внутренние силы и деформации, возникающие в упругом теле под действием внешних сил.

Датой возникновения математической теории упругости надо счи­тать 1821 г., когда вышла в свет работа Л. Навье, в которой были сформулированы основные уравнения.

Большие математические трудности решения задач теории упруго­сти привлекли к ней внимание многих выдающихся ученых-математи­ков XIX в.: Ламе, Клапейрона, Пуассона и др. Дальнейшее развитие теория упругости получила в трудах французского математика О. Коши (1789-1857), который ввел понятия деформации и напряжения, упростив тем самым вывод общих уравнений.

В 1828 г. основной аппарат математической теории упругости на­шел свое завершение в трудах французских ученых и инженеров Г. Ла­ме (1795-1870) и Б. Клапейрона (1799-1864), преподававших в то вре­мя в Институте инженеров путей сообщения в Петербурге. В их сов­местной работе дано приложение общих уравнений к решению практи­ческих проблем.

Решение многих задач теории упругости стало возможным после того, как французский механик Б. Сен-Венан (1797-1886) выдвинул принцип, носящий его имя, и предложил эффективный метод решения задач теории упругости. Заслуга его, по словам известного английского ученого А. Лява (1863-1940), заключается еще и в том, что он увязал проблемы кручения и изгиба балок с общей теорией.

Если французские математики занимались в основном общими проблемами теории, то русские ученые внесли большой вклад в разви­тие науки о прочности решением многих актуальных практических задач. С 1828 но 1860 г. в петербургских технических вузах препода­вал математику и механику выдающийся ученый М. В. Остроградс­кий (1801-1861). Его исследования по вопросам колебаний, возни­кающих в упругой среде, имели важное значение для развития теории упругости. Остроградский воспитал плеяду ученых и инженеров. Сре­ди них следует назвать Д. И. Журавского (1821-1891), который, ра­ботая на строительстве Петербурго-Московской железной дороги, создал не только новые схемы мостов, но и теорию расчета мостовых ферм, а также вывел формулу касательных напряжений в изгибаемой балке.

А. В. Гадолин (1828-1892) применил задачу Ламе об осесимметричной деформации толстостенной трубы к исследованию напряжений, возникающих в стволах артиллерийских орудий, одним из первых при­ложив теорию упругости к конкретной инженерной задаче.

Из других задач, решенных в конце XIX в., нужно отметить работы X. С. Головина (1844-1904), произведшего методами теории упруго сти точный расчет кривого бруса, что дало возможность определить степень точности приближенных решений.

Большая заслуга в развитии науки о прочности принадлежит В. Л. Кирпичеву (1845-1913). Ему удалось значительно упростить различные методы расчета статически неопределимых конструкций. Он первый применил оптический метод к экспериментальному опреде­лению напряжений, создал метод подобия.

Тесная связь с практикой строительства, принципиальность и глу­бина анализа характеризуют советскую науку. И. Г. Бубнов (1872- 1919) разработал новый приближенный метод интегрирования диффе­ренциальных уравнений, блестяще развитый Б. Г. Галеркиным (1871-1945). Вариационный метод Бубнова-Галеркина в настоя­щее время получил широкое распространение. Большое значение име­ют труды этих ученых в теории изгиба пластинок. Новые важные ре­зультаты, продолжая исследования Галеркина, получил П.Ф. Папкович (1887-1946).

Метод решения плоской задачи теории упругости, основанный на применении теории функций комплексного переменного, был предло­жен Г.В. Колосовым (1867-1936). Впоследствии этот метод был раз­вит и обобщен Н.И. Мусхелишвили (1891-1976). Ряд задач по устой­чивости стержней и пластинок, вибрациям стержней и дисков, по тео­рии удара и сжатия упругих тел решил А.Н. Динник (1876-1950). Большое практическое значение имеют работы Л.С. Лейбензона (1879-1951) по устойчивости упругого равновесия длинных закру­ченных стержней, по устойчивости сферических и цилиндрических оболочек. Важное практическое значение имеют капитальные работы В. 3. Власова (1906-1958) по общей теории тонкостенных простран­ственных стержней, складчатых систем и оболочек.

Теория пластичности имеет более короткую историю. Первая мате­матическая теория пластичности была создана Сен-Венаном в 70-е годы XIX в. на основании опытов французского инженера Г. Треска. В начале XX в. над проблемами пластичности работали Р. Мизес. Г. Генки, Л. Прандтль, Т. Карман. С 30-х годов XX в, теория плас­тичности привлекла к себе внимание большого круга видных зарубеж­ных ученых (А. Надаи, Р. Хилла, В. Прагера, Ф. Ходжа, Д. Друккера и др.). Широко известны работы по теории пластичности советских уче­ных В.В. Соколовского, А.Ю. Ишлинского, Г.А. Смирнова-Аляева, Л. М. Качанова. Фундаментальный вклад в создание деформационной теории пластичности внес А.А. Ильюшин. А.А. Гвоздев разработал теорию расчета пластинок и оболочек по разрушающим нагрузкам Эта теория успешно развита А.Р. Ржаницыным.

Теория ползучести как раздел механики деформируемого тела сформировалась сравнительно недавно. Первые исследования в этой области относятся к 20-м годам XX в. Их общий характер определяет­ся тем, что проблема ползучести представляла большую важность для энергомашиностроения и инженеры были вынуждены искать простые и быстро ведущие к цели методы решения практических задач. В создании теории ползучести большая роль принадлежит тем авторам, ко­торые внесли существенный вклад в создание современной теории пластичности. отсюда общность многих идей и подходов. В нашей стране первые работы по механической теории ползучести принадлежат Н.М. Беляеву (1943), К.Д. Миртову (1946), к концу 40-х годов отно­сятся первые исследования Н. Н. Малинина, Ю.Н. Работнова.

Исследования в области упруговязких тел выполнены в работах А.Ю. Ишлинского, А.Н. Герасимова, А.Р. Ржаницына, Ю.Н. Работнова. Применение этой теории к стареющим материалам, в первую очередь к бетону, дано в работах Н.X. Арутюняна, А.А. Гвоздева, Г.Н Маслова. Большой объем исследований ползу чести полимерных материалов выполнен научными коллективами под руководством А.А. Ильюшина, А.К. Малмейстера, М.И. Розовского, Г.Н. Савина.

Советское государство уделяет большое внимание науке. Органи­зация научно-исследовательских институтов, участие в разработке актуальных проблем больших коллективов ученых позволили поднять советскую науку на более высокую ступень.

В кратком обзоре нет возможности подробнее остановиться на рабо­тах всех ученых, внесших свой вклад в развитие теории упругости и пластичности. Желающие подробно ознакомиться с историей развития этой науки могут обратиться к учебнику Н.И. Безухова, где дан детальный разбор основных этапов развития теории упругости и плас­тичности, а также приведена обширная библиография.

1.1.Основные гипотезы, принципы и определения

Теория напряжений как раздел механики сплошных сред базируется на ряде гипотез, основными из которых следует назвать гипотезы сплошности и естественного (фонового) напряженного состояния.

Согласно гипотезе о сплошности все тела принимаются за совершенно сплошные как до приложения нагрузки (до деформирования), так и после ее действия. При этом сплошным (непрерывным) остается любой объем тела, в том числе и элементарный, то есть бесконечно малый. В связи с этим деформации тела считаются непрерывными функциями координат, когда материал тела деформируется без образования в нем трещин или прерывистых складок.

Гипотеза об естественном напряженном состоянии предполагает наличие начального (фонового) уровня напряженности тела, обычно принимаемого за нулевой, а фактические напряжения, вызываемые внешней нагрузкой, считаются приращения напряжений над ест естественным уровнем.

Наряду с названными основными гипотезами, в теории напряжений принят и ряд основополагающих принципов, среди которых в первую очередь необходимо назвать наделение тел идеальной упругостью, шаровой изотропией, совершенной однородностью, линейной зависимостью между напряжениями и деформациями.

Идеальная упругость есть способность материалов, подвергаемых деформированию, восстанавливать свою первоначальную форму (размеры и объем) после снятия внешней нагрузки (внешнего воздействия). Практически все горные породы и большинство строительных материалов обладают в известной степени упругостью, к этим материалам можно отнести и жидкости, и газы.

Шаровая изотропия предполагает одинаковость свойств материалов во всех направлениях действия нагрузки, антиподом ей является анизотропия, то есть неодинаковость свойств в различных направлениях (некоторые кристаллы, древесина и др.). При этом нельзя смешивать понятия шаровой изотропии и однородности: например, для однородной структуры древесины свойственна анизотропия – различие в прочности дерева вдоль и поперек волокон. Упругим, изотропным и однородным материалам присуща линейная зависимость между напряжениями и деформациями, описываемая законом Гука, рассмотрению которого посвящен соответствующий раздел учебного пособия.

Основополагающим принципом в теории напряжений (и деформаций, в том числе) является и принцип локальности действия самоуравновешенных внешних нагрузок – принцип Сен-Венана. Согласно этому принципу, приложенные к телу в какой либо точке (линии) уравновешенная система сил вызывает в материале напряжения, быстро убывающие по мере удаления от места приложения нагрузки, например, по экспоненциальному закону. Примером такого действия может служить разрезание бумаги ножницами, которые деформируют (режут) бесконечно малую часть листа (линию), тогда как остальные части листа бумаги не будут нарушены, то есть будет иметь место локальная деформация. Применение принципа Сен-Венана способствует упрощению математических выкладок при решении задач по оценке НДС за счет замены заданной сложной для математического описания нагрузки на более простую, но эквивалентную ей.

Говоря о предмете изучения в теории напряжений, следует дать и определение самого напряжения, под которым понимается мера внутренних усилий в теле, в пределах некоторого его сечения, распределенных по рассматриваемому сечению и противодействующих внешней нагрузке. При этом напряжения, действующие на поперечной площадке и перпендикулярной ей, называются нормальными; соответственно напряжения, параллельные этой площадке или касающиеся ее, будут касательными.

Рассмотрение теории напряжений упрощается при введении следующих допущений, практически не снижающих точность получаемых решений:

Относительные удлинения (укорочения), а также относительные сдвиги (углы сдвига) много меньше единицы;

Перемещения точек тела при его деформировании малы по сравнению с линейными размерами тела;

Углы поворота сечений при изгибном деформировании тела также очень малы по сравнению с единицей, а их квадраты пренебрежимо малы в сравнении с величинами относительных линейных и угловых деформаций.

Основная задача теории упругости - определение напряженно-деформированного состояния по заданным условиям нагружения и закрепления тела.

Напряженно-деформированное состояние определено, если найдены компоненты тензора напряжений {} и вектора перемещений, девять функций.

Основные уравнения теории упругости

Для того, чтобы найти эти девять функций надо записать основные уравнения теории упругости, или:

Дифференциальные Коши

где - компоненты тензора линейной части деформаций Коши;

Компоненты тензора производной перемещения по радиусу.

Дифференциальные уравнения равновесия

где - компоненты тензора напряжений; - проекция объемной силы на ось j.

Закон Гука для линейно-упругого изотропного тела

где - константы Ламе; для изотропного тела. Здесь - нормальные и касательные напряжения; деформации и углы сдвига соответственно.

Вышеперечисленные уравнения должны удовлетворять зависимостям Сен-Венана

В теории упругости задача решена, если выполняются все основные уравнения.

Типы задач теории упругости

Граничные условия на поверхности тела должны выполняться и в зависимости от типа граничных условий различают три типа задач теории упругости.

Первый тип. На поверхности тела заданы силы. Граничные условия

Второй тип. Задачи, в которых на поверхности тела задано перемещение. Граничные условия

Третий тип. Смешанные задачи теории упругости. На части поверхности тела заданы силы, на части поверхности тела задано перемещение. Граничные условия

Прямая и обратная задачи теории упругости

Задачи, в которых на поверхности тела заданы силы или перемещения, а требуется найти напряженно-деформированное состояние внутри тела и то, что не задано на поверхности, называют прямыми задачами. Если же внутри тела заданы напряжения, деформации, перемещения и т.д., а требуется определить то, что не задано внутри тела, а также перемещения и напряжения на поверхности тела (то есть найти причины, вызвавшие такое напряженно-деформированное состояние)), то такие задачи называются обратными.

Уравнения теории упругости в перемещениях (уравнения Ламе)

Для определения уравнений теории упругости в перемещениях запишем: дифференциальные уравнения равновесия (18) закон Гука для линейно-упругого изотропного тела (19)

Если учесть, что деформации выражаются через перемещения (17), запишем:

Следует также напомнить, что угол сдвига связан с перемещениями следующим соотношением (17):

Подставив в первое уравнение равенств (19) выражение (22), получим, что нормальные напряжения

Отметим, что запись иц в данном случае не подразумевает суммирования по i.

Подставив во второе уравнение равенств (19) выражение (23), получим, что касательные напряжения

Запишем уравнения равновесия (18) в развернутом виде для j = 1

Подставив в уравнение (26) выражения для нормальных (24) и касательных (25) напряжений, получим

где л- константа Ламе, которая определяется по выражению:

Подставим выражение (28) в уравнение (27) и запишем,

где определяется по выражению (22), или в развернутом виде

Разделим выражение (29) на G и приведем подобные слагаемые и получим первое уравнение Ламе:

где - оператор Лапласа (гармонический оператор), который определятся как

Аналогично можно получить:

Уравнения (30) и (32) можно записать в следующем виде:

Уравнения (33) или (30) и (32) являются уравнениями Ламе. Если объемные силы равны нулю или постоянны, то

причем запись в данном случае не подразумевает суммирования по i. Здесь

или, с учетом (31)

Подставив (22) в (34) и проведя преобразования, получим

а, следовательно

где - функция, удовлетворяющая данному равенству. Если

следовательно, f - функция гармоническая. Значит и объемная деформация также функция гармоническая.

Считая верным предыдущее предположение, возьмем гармонический оператор от i -ой строчки уравнения Ламе

Если объемные силы равны нулю или постоянны, то компоненты перемещения есть бигармонические функции.

Известны различные формы представления бигармонических функций через гармонические (удовлетворяющие уравнениям Ламе).

где k = 1,2,3. Причем

Можно показать, что такое представление перемещений через гармоническую функцию обращает в тождество уравнения Ламе (33). Часто их называют условиями Попковича-Гродского. Четыре гармонические функции не обязательны, ведь ф0 можно приравнять нулю.

Осесимметричные задачи теории упругости (лекции)

Роль расчетов на прочность и жесткость в современном машиностроении становится все более ответственной, а сами расчеты – все более сложными. Решение большинства возникающих при этом задач доступно лишь высококвалифицированным специалистам.

Вопросы, связанные с расчетами элементов конструкций, рассматриваются в таких традиционных дисциплинах как "Сопротивление материалов", "Строительная механика", "Теория упругости", в разных сочетаниях и объемах представленных в учебных программах механических специальностей вузов. Соответствующие материалы разбросаны по многочисленным литературным источникам и очень перегружены теоретической частью, изложенной на уровне читателя с высокой математической подготовкой. В них часто не подчеркивается методическая основа решения задач, а также не проводится достаточного количества примеров из расчетной инженерной практики.

Одной из целей настоящего курса лекций является компактное изложение основ математической линейной теории упругости с акцентом на ее методы, используемые в практических приложениях. Другая цель – показать на конкретных примерах элементов машин (толстостенные трубы, пластины, оболочки), как реализуется математический аппарат этой теории при изучении расчетных формул и как последние используются в конкретных примерах. Сделано это в статической упругой постановке для наиболее распространенного класса осесимметрических задач, наиболее простых по влиянию на этот аппарат геометрии и характера нагружения исследуемых объектов.

Знакомство с данным курсом существенно облегчит дальнейшее изучение методов проектирования и расчета сложных машин и сооружений, которыми изобилует современная техника. Эти методы в настоящее время стремятся отразить такие особенности расчетов элементов конструкций как нестационарный температурный режим, переменные параметры упругости, возможную слоистую или армированною структуру, пластические деформации и деформации ползучести, причем при возможно более полном учете параметров как движения, так и геометрии исследуемых объектов. В большинстве случаев это осуществляется лишь с привлечением современных численных методов с последующей реализацией их на ЭВМ.

Разделы

Основное содержание

Основы теории упругости

Основные положения, допущения и обозначения.

Уравнения равновесия элементарного параллепипеда и элементарного тетраэдра.

Нормальные и касательные напряжения по наклонной площадке.

Определение главных напряжений и наибольших касательных напряжений в точке.

Напряжения по октаэдрическим площадкам.

Понятие о перемещениях. Зависимости между деформациями и перемещениями.

Относительная линейная деформация в произвольном направлении.

Уравнения совместимости деформаций.

Закон Гука для тела.

Плоская задача в прямоугольных координатах.

Плоская задача в полярных координатах.

Возможные решения задач теории упругости.

Решение задач в перемещениях.

Решение задач в напряжениях.

Случай температурного поля.

Простейшие осесимметричные задачи

Уравнения в цилиндрических координатах.

Деформация толстостенного сферического сосуда.

Сосредоточенная сила, действующая на плоскость.

Частные случаи загрузки упругого полупространства.

Вдавливание абсолютно жесткого шара в упругое полупространство.

Задача об упругом смятии шаров.

Толстостенные трубы

Общие сведения. Уравнение равновесия элемента трубы.

Исследование напряжений при давлении на одном из контуров.

Условия прочности при упругой деформации.

Напряжения в составных трубах.

Понятие о расчете многослойных труб.

Примеры.

Пластины, мембраны

Основные определения и допущения.

Дифференциальные уравнения изогнутой срединной поверхности пластины в прямоугольных координатах.

Цилиндрический и сферический изгиб пластины.

Изгибающие моменты при осесимметричном изгибе круглой пластины.

Дифференциальное уравнение изогнутой срединной поверхности круглой пластины.

Граничные условия. Наибольшие напряжения и прогибы. Условия прочности.

Температурные напряжения в пластинах.

Определение усилий в мембранах. Цепные усилия и напряжения.

Приближенное определение прогиба и напряжений в круглой мембране.

Примеры.

Оболочки

Общие сведения об оболочках.

Понятия о расчете оболочки произвольной формы.

Оболочка вращения, нагруженная нормальным давлением.

Изгиб цилиндрической круговой оболочки.

Определение усилий и перемещений в длинной цилиндрической оболочке.

Длинная цилиндрическая оболочка, подкрепленная кольцами.

Местные напряжения в сопряжении оболочек.

ОСНОВЫ ТЕОРИИ УПРУГОСТИ

ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ

ОСНОВЫ ТЕОРИИ УПРУГОСТИ

Основные положения, допущения и обозначения Уравнения равновесия элементарного параллелепипеда и элементарного тетраэдра. Нормальные и касательные напряжения по наклонной площадке

Определение главных напряжений и наибольших касательных напряжений в точке. Напряжения по октаэдрическим площадкам Понятие о перемещениях. Зависимости между деформациями и перемещениями. Относительная

линейная деформация в произвольном направлении Уравнения совместности деформаций. Закон Гука для изотропного тела Плоская задача в прямоугольных координатах Плоская задача в полярных координатах

Возможные решения задач теории упругости. Решения задач в перемещениях и напряжениях Наличие температурного поля. Краткие выводы по разделу ПРОСТЕЙШИЕ ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ Уравнения в цилиндрических координатах Уравнения в цилиндрических координатах (продолжение)

Деформация толстостенного сферического сосуда Сосредоточенная сила, действующая на плоскость

Частные случаи загрузки упругого полупространства: равномерная загрузка по площади круга, загрузка на площади круга по "полушару", обратная задача Вдавливание абсолютно жесткого шара в упругое полупространство. Задача об упругом смятии шаров ТОЛСТОСТЕННЫЕ ТРУБЫ

Общие сведения. Уравнение равновесия элемента трубы Исследование напряжений при давлении на одном из контуров. Условия прочности при упругой деформации Напряжения в составных трубах. Понятие о расчете многослойных труб Примеры расчетов

ПЛАСТИНЫ, МЕМБРАНЫ Основные определения и гипотезы

Дифференциальное уравнение изогнутой срединной поверхности пластины в прямоугольных координатах Цилиндрический и сферический изгиб пластины

Изгибающие моменты при осесимметричном изгибе круглой пластины. Дифференциальное уравнение изогнутой срединной поверхности круглой пластины Граничные условия в круглых пластинах. Наибольшие напряжения и прогибы. Условия прочности. Температурные напряжения в пластинах

Определение усилий в мембранах. Цепные усилия и напряжения. Приближенное определение прогибов и напряжений в круглых мембранах Примеры расчетов Примеры расчетов (продолжение)

1.1 Основные положения, допущения и обозначения

Теория упругости имеет целью аналитическое изучение напряженнодеформированного состояния упругого тела. С помощью теории упругости могут быть проверены решения, полученные с использованием допущений сопротивления

материалов, и установлены границы применимости этих решений. Иногда разделы теории упругости, в которых, как и в сопротивлении материалов, рассматривается вопрос о пригодности детали, но с использованием достаточно сложного математического аппарата (расчет пластин, оболочек, массивов), относят к прикладной теории упругости.

В настоящей главе изложены основные понятия математической линейной теории упругости. Применение математики к описанию физических явлений требует их схематизации. В математической теории упругости задачи решаются с возможно меньшим числом допущений, что усложняет математические приемы, применяемые для решения. В линейной теории упругости предполагается существование линейной зависимости между составляющими напряжениями и деформациями. Для ряда материалов (резина, некоторые сорта чугуна) такая зависимость даже при малых деформациях не может быть принята: диаграмма σ - ε в пределах упругости имеет одинаковые очертания как при нагружении, так и при разгрузке, но в обоих случаях криволинейна. При исследовании таких материалов необходимо пользоваться зависимостями нелинейной теории упругости.

В математической линейной теории упругости исходят из следующих допущений:

1. О непрерывности (сплошности) среды. При этом атомистическая структура вещества или наличие каких-либо пустот не учитывается.

2. О естественном состоянии, на основании которого начальное напряженное (деформированное) состояние тела, возникшее до приложения силовых воздействий, не учитывается, т. е. предполагается, что в момент нагружения тела деформации и напряжения в любой его точке равны нулю. При наличии начальных напряжений это допущение будет справедливым, если только к результирующим напряжениям (сумме начальных и возникших от из воздействий) могут быть применены зависимости линейной теории упругости.

3. Об однородности, на основании которого предполагается, что состав тела одинаков во всех точках. Если применительно к металлам это допущение не дает больших погрешностей, то в отношении бетона при рассмотрении малых объемов оно может привести к значительным погрешностям.

4. О шаровой изотропности, на основании которого считается, что механи-ческие свойства материала одинаковы по всем направлениям. Кристаллы металла не обладают таким свойством, но для металла в целом, состоящего из большого числа мелких кристаллов, можно считать, что эта гипотеза справедлива. Для материалов, обладающих различными механическими свойствами в разных направлениях, как, например, для слоистых пластиков, разработана теория упругости ортотропных и анизотропных материалов.

5. Об идеальной упругости, на основании которого предполагается полное исчезновение деформации после снятия нагрузки. Как известно, в реальных телах при любом нагружении возникает остаточная деформация. Поэтому допущение

6. О линейной зависимости между составляющими деформациями и напря-жениями.

7. О малости деформаций, на основании которого предполагается, что относительные линейные и угловые деформации малы по сравнению с единицей. Для таких материалов, как резина, или таких элементов, как спиральные пружины, создана теория больших упругих деформаций.

При решении задач теории упругости пользуются теоремой о единственности решения: если заданные внешние поверхностные и объемные силы находятся в равновесии, им соответствует одна единственная система напряжений и перемещений. Положение о единственности решения справедливо, если только справедливы допущение о естественном состоянии тела (иначе возможно бесчисленное количество решений) и допущение о линейной зависимости между деформациями и внешними силами.

При решении задач теории упругости часто пользуются принципом Сен-Венана: если внешние силы, приложенные на небольшом участке упругого тела, заменить действующей на том же участке статически эквивалентной системой сил (имеющей тот же главный вектор и тот же главный момент), то эта замена вызовет лишь изменение местных деформаций.

В точках, достаточно удаленных от мест приложения внешних нагрузок, напряжения мало зависят от способа их приложения. Нагрузка, которая в курсе сопротивления материалов схематически выражалась на основании принципа Сен-Венана в виде силы или сосредоточенного момента, на самом деле представляет собой нормальные и касательные напряжения, распределенные тем или иным способом на определенном участке поверхности тела. При этом одной и той же силе или паре сил может соответствовать различное распределение напряжений. На основании принципа Сен-Венана можно считать, что изменение усилий на участке поверхности тела почти не отражается на напряжениях в точках, удаленных на достаточно большое расстояние от места приложения этих усилий (по сравнению с линейными размерами нагруженного участка).

Положение исследуемой площадки, выделенной в теле (рис. 1), определяется направляющими косинусами нормали N к площадке в выбранной системе прямоугольных осей координат х, у и z.

Если Р - равнодействующая внутренних сил, действующих по элементарной площадке , выделенной у точки А, то полное напряжение р N в этой точке по площадке с нормалью N определяется как предел отношения в

следующей форме:

.

Вектор р N можно разложить в пространстве на три взаимно перпенди-кулярные составляющие.

2. На составляющие σ N , τ N s и τ N t по направлениям нормали к площадке (нормальное напряжение) и двух взаимно перпендикулярных осей s и t (рис. 1,б), лежащих в плоскости площадки (касательные напряжения). Согласно рис.1, б

Если сечение тела или площадка параллельны одной из плоскостей координат, например у0z (рис. 2), то нормалью к этой площадке будет третья ось координат х и составляющие напряжения будут иметь обозначения σ x , τ xy и τ xz .

Нормальное напряжение положительно, если оно растягивающее, и отрицательно, если оно сжимающее. Знак касательного напряжения определяется с помощью следующего правила: если положительное (растягивающее) нормальное напряжение по площадке дает положительную проекцию, то касательное

напряжение по той же площадке считается положительным при условии, что оно тоже дает положительную проекцию на соответствующую ось; если же растягивающее нормальное напряжение дает отрицательную проекцию, то положительное касательное напряжение тоже должно давать отрицательную проекцию на соответствующую ось.

На рис. 3, например, все составляющие напряжения, действующие по граням элементарного параллелепипеда, совпадающим с плоскостями координат, положительны.

Чтобы определить напряженное состояние в точке упругого тела, необходимо знать полные напряжения р N по трем взаимно перпендикулярным площадкам, проходящим через эту точку. Так как каждое полное напряжение можно разложить на три составляющие, напряженное состояние будет определено, если будут известны девять составляющих напряжений. Эти составляющие можно записать в виде матрицы

,

называемой матрицей компонентов тензора напряжений в точке.

В каждой горизонтальной строчке матрицы записаны три составляющих напряжения, действующих по одной площадке, так как первые значки (название нормали) у них одинаковые. В каждом вертикальном столбце тензора записаны три напряжения, параллельных одной и той же оси, так как вторые значки (название оси, параллельно которой действует напряжение) у них одинаковые.

1.2 Уравнения равновесия элементарного параллелепипеда

и элементарного тетраэдра

Выделим у исследуемой точки А (с координатами х, у и z) напряженного упругого тела тремя взаимно перпендикулярными парами плоскостей элементарный параллелепипед с размерами ребер dx, dy и dz (рис. 2). По каждой из трех взаимно перпендикулярных граней, примыкающих к точке А (ближайших к плоскостям координат), будут действовать три составляющих напряжения − нормальное и два касательных. Считаем, что по граням, примыкающим к точке А, они положительны.

При переходе от грани, проходящей через точку А, к параллельной грани напряжения меняются и получают приращения. Например, если по грани CAD, проходящей через точку А, действуют составляющие напряжения σ х = f 1 (x,y,z), τ xy =f 2 (x,y,z,), τ xz =f 3 (x,y,z,) , то по параллельной грани, вследствие приращения только одной координаты х при переходе от одной грани к другой, будут действовать

составляющие напряжения Можно определить напряжения на всех гранях элементарного параллелепипеда, как показано на рис. 3.

Кроме напряжений, приложенных к граням элементарного параллелепипеда, на него действуют объемные силы: силы веса, инерционные. Обозначим проекции этих сил, отнесенных к единице объема, на оси координат через X, У и Z. Если приравнять нулю сумму проекций на ось х всех нормальных, касательных и объемной сил,

действующих на элементарный параллелепипед, то после сокращения на произведение dxdydz получим уравнение

.

Составив аналогичные уравнения проекций сил на оси у и z , напишем три дифференциальных уравнения равновесия элементарного параллелепипеда, полученных Коши,

При уменьшении размеров параллелепипеда до нуля он превращается в точку, а σ и τ представляют собой составляющие напряжения по трем взаимно перпендикулярным площадкам, проходящим через точку А .

Если приравнять нулю сумму моментов всех сил, действующих на элементарный параллелепипед, относительно оси x c , параллельной оси х и проходящей через его центр тяжести, получим уравнение

или, с учетом того, что второй и четвертый члены уравнения высшего порядка малости по сравнению с остальными, после сокращения на dxdydz

τ yz - τ zy = 0 или τ yz = τ zy.

Составив аналогичные уравнения моментов относительно центральных осей у c и z c , получим три уравнения закона парности касательных напряжений

τ xy = τ yx, τ yx = τ xy , τ zx = τ xz . (1.3)

Этот закон формулируется так: касательные напряжения, действующие по взаимно перпендикулярным площадкам и направленные перпендикулярно к линии пересечения площадок, равны по величине и одинаковы по знаку.

Таким образом, из девяти составляющих напряжений матрицы тензора Т σ шесть попарно равны друг другу, и для определения напряженного состояния в точке достаточно найти лишь следующие шесть составляющих напряжений:

.

Но составленные условия равновесия дали нам всего лишь три уравнения (1.2), из которых шесть неизвестных найдены быть не могут. Таким образом, прямая задача определения напряженного состояния в точке в общем случае статически неопределима. Для раскрытия этой статической неопределимости необходимы дополнительные геометрические и физические зависимости.

Рассечем элементарный параллелепипед у точки А плоскостью, наклоненной к его граням; пусть нормаль N к этой плоскости имеет направляющие косинусы l, т и п. Получившаяся геометрическая фигура (рис. 4) представляет собой пирамиду с треугольным основанием − элементар-ный тетраэдр. Будем считать, что точка А совпадает с началом координат, а три взаимно перпендикулярные грани тетраэдра − с плоскостями координат.

Составляющие напряжения, действующие по этим граням тетраэдра, будем считать

положительными. Они показаны на рис. 4. Обозначим через , и проекции полного напряжения p N , действующего по наклонной грани BCD тетраэдра, на оси х, у и z. Площадь наклонной грани BCD обозначим dF. Тогда площадь грани АВС будет dFп, грани ACD − dFl и грани АDВ − dFт.

Составим уравнение равновесия тетраэдра, спроектировав все силы, действующие по его граням, на ось х; проекция объемной силы в уравнение проекций не входит, так

как представляет собой величину высшего порядка малости по сравнению с проекциями поверхностных сил:

Составив уравнения проекции сил, действующих на тетраэдр, на оси у и z , получим еще два аналогичных уравнения. В результате будем иметь три уравнения равновесия элементарного тетраэдра

Разделим пространственное тело произвольной формы системой взаимно перпендикулярных плоскостей хОу, yОz и хОz (рис. 5) на ряд элементарных параллелепипедов. У поверхности тела при этом образуются элементарные

тетраэдры, (криволинейные участки поверхности ввиду их малости можно заменить плоскостями). В таком случае р N будет представлять нагрузку на поверхности, а уравнения (1.4) будут связывать эту нагрузку с напряжениями σ и τ в теле, т. е. будут представлять граничные условия задачи теории упругости. Условия, определяемые этими уравнениями, называют условиями на поверхности.

Следует отметить, что в теории упругости внешние нагрузки представляются нормальными и касательными напряжениями, приложенными по какому-либо закону к площадкам, совпадающим с поверхностью тела.

1.3 Нормальные и касательные напряжения по наклонной

площадке

Рассмотрим элементарный тетраэдр ABCD, три грани которого параллельны координатным плоскостям, а нормаль N к четвертой грани составляет с координатными осями углы, косинусы которых равны l, т и п (рис. 6). Будем считать заданными составляющие нормальные и касательные напряжения, действующие по площадкам, лежащим в координатных плоскостях, и определим напряжения на площадке BCD. Выберем новую систему прямоугольных осей координат х 1 , y 1 и z 1 , так чтобы ось х 1 совпадала с нормалью N ,

gastroguru © 2017