Костное вещество. Из чего состоят кости

text_fields

text_fields

arrow_upward

Костное вещество состоит из

Органических (оссеин ) веществ – 1/3 и
неорганических (2/3) (главным образом, солей кальция, 95%) веществ.

Если кость подвергнуть действию раствора соляной кислоты, соли кальция растворятся, а органическое вещество останется, сохраняя форму кости. Такая декальцинированная кость приобретает исключительную эластичность и легко деформируется. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается. Такая кость сохраняет прежнюю форму, но приобретает исключительную хрупкость. Она может расколоться при малейшем прикосновении. С возрастом количественное соотношение оссеина и минеральных солей изменяется. Кости детей содержат больше оссеина и поэтому они более эластичны. В старости в костях становится больше минеральных солей, их содержание может доходить до 80%. Поэтому кости стариков более хрупкие, а при падении у них часто случаются переломы.

Лежащие в земле кости теряют органическое вещество под воздействием бактерий и становятся хрупкими. В сухом грунте кости сохраняются лучше, так как для размножения бактерий необходима влага. Такие кости постепенно мумифицируются. В известковой почве кости пропитываются кальцием – «окаменевают».

Строение костей

text_fields

text_fields

arrow_upward

Рис. 1.1.

Самая прочная кость нашего скелета – большая берцовая , на нее ложится наибольшая тяжесть при поддержании тела в вертикальном положении.

Эта кость способна выдержать нагрузку до 1650 кг, т.е. примерно в 25 раз больше ее обычной нагрузки. Таков запас технической прочности природной конструкции.

Кость уникальна не только по сочетанию твердости и упругости, обусловленному ее химическим составом. Она отличается также исключительной легкостью. Это связано с особенностями ее микроскопического строения.

Поверхность кости покрыта надкостницей (Рис. 1.1 Большеберцовая кость (часть надкостницы разрезана и откинута)) .

Она состоит из двух слоев – наружного (соединительнотканного) и внутреннего – остеогенного, содержащего стволовые костные клетки и остеобласты.

При переломах костей остеобласты «зарубцовывают» щель грубоволокнистой костной тканью, образуя «костную мозоль».

Надкостница богата нервами и сосудами, через нее осуществляется питание и иннервация кости.

На распиле через кость обнаруживается неоднородность ее строения. На поверхности расположено так называемое плотное, или компактное, вещество (substantia compacta), а в глубине – губчатое (substantia spongiosa) (рис. 1.2).

Толщина слоя компактного вещества изменяется в зависимости от нагрузки, испытываемой костью, и наиболее значительна в области диафизов.

Рис. 1.2. Проксимальный конец бедренной кости

Губчатое вещество образовано очень тонкими костными перекладинами, которые располагаются не беспорядочно, а в соответствии с распределением функциональных нагрузок на всю кость или ее части.

Преимущественно из губчатого вещества состоят эпифизы длинных костей, все короткие кости, часть смешанных и плоских костей, т.е. легкие и прочные части скелета, испытывающие напряжение в различных направлениях.

Диафизы и некоторые тонкие плоские кости почти полностью лишены губчатого вещества. Они выполняют функции опоры и движения.

Рис. 1.2. Проксимальный конец бедренной кости:
А – фронтальный распил:
1 – костномозговая полость;
2 – губчатое вещество;
3 – компактное вещество;

Б – схема расположения перекладин в губчатом веществе.

Структурная единица костной ткани

text_fields

text_fields

arrow_upward

Структурной единицей костной ткани являются остеон или гаверсова система (рис. 1.3).

Рис. 1.3. Схема строения трубчатой кости:

А – надкостница;
Б – компактное вещество кости;
В – эндост;
Г – костно-мозговая полость.
1 – вставочные пластинки;
2 – слой наружных общих пластинок;
3 – кровеносные сосуды;
4 – остеоциты;
5 – канал остеона;
6 – прободающий канал;
7 – волокнистый слой надкостницы;
8 – костная трабекула губчатой ткани;
9 – слой внутренних общих пластинок;
10 – остеон

Остеон представляет собой систему костных пластинок в виде вставленных друг в друга цилиндров, между которыми лежат костные клетки – остеоциты. Расположенный в центре остеона гаверсов канал, содержит кровеносные сосуды, обеспечивающие обмен веществ клеток кости. Между остеонами находятся вставочные пластинки. Из остеонов состоит компактное вещество и перекладины губчатого вещества. Распределение компактного и губчатого вещества зависит от функциональных условий кости.

Костные ячейки губчатого вещества заполнены красным костным мозгом. Желтый костный мозг находится в центральном канале трубчатых костей – костно-мозговой полости.

У взрослых вся полость заполнена желтым костным мозгом, но в период роста и развития ребенка, когда требуется интенсивная кроветворная функция, преобладает красный костный мозг. С возрастом он постепенно замещается желтым.

О своем организме человек знает много, например, где расположены органы, какую функцию они выполняют. Почему бы не проникнуть вглубь кости и не узнать ее строение и состав? Это очень занимательно, ведь химический состав костей весьма разнообразен. Он помогает понять, почему каждый костный элемент очень важен и какую функцию он несет.

Основная информация

Живая кость у взрослых людей имеет:

  • 50% - вода;
  • 21, 85% - вещества неорганического типа;
  • 15, 75% - жир;
  • 12,4% - коллагеновые волокна.

Вещества неорганического типа – это разные соли. Большая их часть представлена известковым фосфатом (шестьдесят процентов). В не таком большом количестве присутствует известковый карбонат и магниевый сульфат (5,9 и 1,4% соответственно). Интересно, что в костях представлены все земные элементы. Минеральные соли поддаются растворению. Для этого нужен некрепкий раствор азотной или соляной кислоты. Процесс растворения в этих веществах имеет свое название – декальцинация. После нее остается лишь органической вещество, которое сохраняет костную форму.

Органическое вещество отличается пористостью и эластичностью. Его можно сравнить с губкой. Что происходит, когда удаляется это вещество через сжигание? Кость по форме остается прежней, но теперь она становится хрупкой.

Понятно, что только взаимосвязь неорганических и органических веществ делает костный элемент прочным, упругим. Еще более прочной кость становится благодаря составу губчатого и компактного вещества.

Неорганический состав

Примерно век назад было высказано мнение, что костная ткань человека, точнее, ее кристаллы, по структуре похожи на апатиты. Со временем это было доказано. Костные кристаллы – гидроксилапатиты, а по форме похожи на палочки и пластины. Но кристаллы – это лишь доля минеральной фазы ткани, другая доля – это аморфный фосфат кальция. Его содержание зависит от возраста человека. У молодых людей, подростков и детей его много, больше, чем кристаллов. Впоследствии соотношение меняется, поэтому в более старшем возрасте больше уже кристаллов.

Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция

Организм взрослого человека имеет более одного килограмма кальция. Он содержится в основном в зубных и костных элементах. В сочетании с фосфатом образуется гидроксилапатит, который не растворяется. Особенность в том, что в костях основная часть кальция регулярно обновляется. Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция.

Минеральная доля имеет много ионов, но чистый гидроксилапатит их не содержит. Есть ионы хлора, магния и других элементов.

Органический состав

95% матрикса органического типа – это коллаген. Если говорить о его значимости, то вместе с минеральными элементами он является основным фактором, от которого зависят механические костные свойства. Коллаген ткани кости имеет особенности:

  • в нем больше оксипролина по сравнению с кожным коллагеном;
  • в нем много свободных ε-амино групп оксилизиновых и лизиновых остатков;
  • в нем больше фосфата, основная часть которого связана с сериновыми остатками.

Сухой деминерализованный костный матрикс содержит почти двадцать процентов белков неколлагеновых. Среди них есть части протеогликанов, но их немного. Органический матрикс содержит глюкозаминогликаны. Считается, что они напрямую связаны с оссификацией. Кроме того, если они изменяются, происходит окостенение. В костном матриксе есть липиды – прямой компонент ткани кости. Они участвуют в минерализации. Костный матрикс имеет еще одну особенность – в нем очень много цитрата. Почти девяносто его процентов – доля костной ткани. Считается, что цитрат важен для процесса минерализации.

Вещества кости

Большая часть костей взрослого человека имеет в составе пластинчатую костную ткань, из которой образуется два вида вещества: губчатой и компактное. Их распределение зависит от функциональных нагрузок, осуществляемых на кость.

Если рассматривать строение костей, то в образовании диафизов трубчатых костных элементов играет важную роль компактное вещество. Оно как тонкая пластина покрывает снаружи их эпифизы, плоские, губчатые кости, которые построены из губчатого вещества. В компактном веществе очень много тоненьких канальцев, которые состоят из кровеносных сосудов и волокон нервов. Некоторые каналы находятся в основном параллельно костной поверхности.

Стенки каналов, расположенных в центре, сформированы пластинками, толщина которых от четырех до пятнадцати мкм. Они как будто вставлены друг в друга. Один канал возле себя может иметь двадцать подобных пластинок. Состав кости включает в себя остеон, то есть объединение канала, расположенного в центре, с пластинками возле него. Между остеонами есть пространства, которые наполнены вставочными пластинками.

В строении кости не менее важное значение имеет губчатое вещество. Его название дает основание предположить, что оно похоже на губку. Так оно и есть. Она выстроена с балок, между которыми присутствуют ячейки. Кость человека постоянно испытывает нагрузки в виде сжатия и растяжения. Именно они определяют размеры балок, их расположение.

Костное строение включает надкостницу, то есть соединительнотканную оболочку. Она прочно соединена с костным элементом с помощью волокон, которые проходят в его глубину. Накостница имеет два слоя:

  1. Наружный, фиброзный. Он формируется волокнами коллагена, благодаря которым оболочка отличается прочностью. Этот слой имеет в строении нервы и сосуды.
  2. Внутренний, ростковый. В его строении есть остеогенные клетки, благодаря которым кость расширяется и восстанавливается после травм.

Получается, что надкостница выполняет три основные функции: трофическую, защитную, костеобразующую. Говоря о строении кости также следует упомянуть об эндосте. Им кость покрыта изнутри. Он похож на тонкую пластинку и несет в себе остеогенную функцию.

Еще немного о костях

Благодаря удивительному строению и составу кости обладают уникальными характеристиками. Они очень пластичны. Когда человек выполняет физические нагрузки, тренируется, кости проявляют гибкость и подстраиваются под изменяющиеся обстоятельства. То есть в зависимости от нагрузок увеличивается или уменьшается количество остеонов, меняется толщина пластинок веществ.

Каждый человек может посодействовать оптимальному костному развитию. Для этого необходимо регулярно и умеренно заниматься физическими упражнениями. Если в жизни преобладает сидячий образ действий, кости начнут ослабляться и станут более тонкими. Есть заболевания костей, которые ослабляют их, например, остеопороз, остеомиелит. На строение кости может оказать влияние профессия. Конечно, не последнюю роль играет наследственность.

Итак, на некоторые особенности костного строения человек не способен повлиять. Все же некоторые факторы зависят от него. Если с детства родители будут следить за тем, чтобы ребенок правильно питался и занимался умеренной физической нагрузкой, его кости будут в прекрасном состоянии. Это значительно повлияет на его будущее, ведь ребенок вырастет крепким, здоровым, то есть успешным человеком.

Костная ткань отличается рядом весьма своеобразных качеств, резко выделяющих ее среди всех других тканей и систем человеческого организма и ставящих ее на обособленное место. Основной и главной особенностью костной ткани является ее богатство минеральными солями.

Если принять вес тела взрослого человека в среднем за 70 кг, то костный скелет весит 7 кг, а вместе с костным мозгом - 10 кг (мышцы - „мясо” - весят 30 кг). Сами кости по весу состоят из 25% воды, 30% органического вещества и 45% минералов. Содержание воды и, стало быть, относительное содержание и других ингредиентов колеблется. Количество воды сравнительно очень велико в эмбриональной жизни, оно убывает в детском возрасте и постепенно уменьшается по мере роста и развития ребенка, отрока и зрелого человека, достигая в старости наименьшего отношения к общему весу. Кости с возрастом можно сказать буквально высушиваются.

Органический состав костей формируется главным образом из белков - протеинов, преимущественно оссеина, но в сложную органическую часть костной ткани входят и некоторые альбумины, мукоидные и другие вещества весьма непростого химического строения.

Каков же больше всего нас интересующий минеральный состав костного вещества? 85% солей составляет фосфорнокислая известь, 10,5% углекислый кальций, 1,5% фосфорнокислая магнезия, а остальные 3% - это натрий, калий, примеси хлора и некоторых редких для человеческого организма элементов. Фосфорнокислый кальций, стало быть составляющий 19/20 содержимого всего солевого костного вещества, образует 58% общего веса костей.

Фосфорнокислые соли имеют кристаллическое строение, и кристаллы располагаются в кости правильно, закономерно. Весьма тщательное изучение минерального остова костного вещества, произведенное в 30-х годах при помощи наиболее совершенных методов, в первую очередь путем рентгенологического структурного анализа, показало, что неорганическое костное вещество человека имеет строение фосфатита-апатита, а именно гидроксил-апатита. При этом интересно, что апатит в костях (и в зубах) человека близок или даже подобен естественному минеральному апатиту в мертвой природе. На это тождество апатита человеческого костного и горнорудного происхождения указывает также их сравнительное исследование в поляризационном свете. Человеческий костный апатит отличается еще содержанием незначительного количества галоида хлора или фтора. Некоторые специалисты по структурному анализу стоят на той точке зрения, что в человеческих костях апатит еще связан с другими химическими соединениями, т.е. что кристаллы неорганической костной субстанции - это смесь двух неорганических химических веществ, одна из которых близка к апатиту. Считают, что наиболее правильно физико-химическая структура костного апатита расшифрована венгерским ученым Сент Нарай-Сабо (St. Naray-Szabo). Наиболее вероятна такая формула строения неорганического состава кости: ЗСА 3 (РO 4) 2 . СаХ 2 , где X - это или Cl, F, ОН, V2O, 1 / 2 SO 4 , 1 / 2 СO 3 и т. д. Есть также указания, что апатит состоит из двух молекул - CaF. Са 4 (РO 4) 3 или СаС1. Са 4 (РO 4) 3 .

Чрезвычайно интересны указания Райнольдса (Reynolds) и др. на то, что при некоторых патологических процессах кости теряют свое нормальное химическое апатитовое строение. Это имеет место, например, при гиперпаратиреоидной остеодистрофии (болезни Реклингхаузена), в то время как при болезни Педжета апатитовая структура кристаллов полностью сохраняется.

Костная ткань - это пусть и весьма древняя по филогенезу, но вместе с тем высоко развитая и исключительно тонко и детально дифференцированная, крайне сложная по всем своим жизненным проявлениям мезенхимальная соединительная ткань.

Изменения в костях при различных патологических процессах бесконечно разнообразны; при каждом отдельном заболевании, в каждой отдельной кости, в каждом отдельном случае патологоанатомическая и патофизиологическая, а следовательно, и рентгенологическая картина имеет свои особенности. Все это громадное разнообразие болезненных явлений сводится, однако, в конечном итоге лишь к некоторым не столь уж многочисленным элементарным качественным и количественным процессам.

Болезнь - это, как известно, не только извращенная арифметическая сумма единичных нормальных явлений, при патологических условиях в целом организме и в отдельных органах и тканях возникают специфические качественные изменения, для которых не существует нормальных прообразов. Глубокий качественный метаморфоз претерпевает и болезненно измененная кость. Надкостница, например, образуя на месте диафизарного перелома мозоль, начинает выполнять новую, в норме ей не свойственную функцию, она вырабатывает хрящевую ткань. Опухоль кости связана с развитием, например, эпителиальных, миксоматозных, гигантоклеточных и других образований, столь же чуждых нормальной кости гистологически, сколь химически для нее необычны отложения холестерина при ксантоматозе или керазина при болезни Гоше. Костный аппарат при рахите или педжетовской перестройке приобретает совершенно новые физические, химические, биологические и прочие качества, для которых в нормальной кости мы не в состоянии подыскать количественные критерии для сравнения.

Но эти качественные свойства, специфические для патологических процессов в костной субстанции, к сожалению, сами по себе не могут быть непосредственно определены рентгенологически, они проявляются на рентгенограммах лишь в виде косвенных, вторичных симптомов. Не в их распознавании и изучении сила рентгенологии. Лишь когда качественно измененная ткань в своей количественной определенности дошла до степени возможного обнаружения, вступает в свои права рентгенологический метод исследования. При помощи безупречных экспериментальных исследований Полина Мек (Mack) доказала, что из различных составных частей костной ткани поглощение рентгеновых лучей происходит на 95% за счет минерального состава (80% лучей задерживается кальцием и 15% - фосфором), и только в пределах до 5% теневое изображение костей обусловлено органическим „мягким” ингредиентом костной ткани. Поэтому в силу самой природы рентгенологического исследования в рентгенодиагностике заболеваний костей и суставов на первый план выступает оценка количественных изменений костной ткани. Нельзя весами измерять расстояние. Рентгенолог при помощи своего исключительно ценного, ’Но все же одностороннего метода в настоящее время еще вынужден ограничиться анализом преимущественно двух основных количественных процессов жизнедеятельности кости, а именно созидания кости и ее разрушения.

КОСНОЕ ВЕЩЕСТВО

КОСНОЕ ВЕЩЕСТВО небиогенные минералы и горные породы, образовавшиеся в основном или глубже биосферы (вне области жизни) или в пределах биосферы на глубине нескольких километров без участия живого вещества. Мертвые (косные) небиогенные горные породы и минералы по массе во много раз превышают массу всего живого вещества.

Экологический словарь , 2001

Косное вещество

небиогенные минералы и горные породы, образовавшиеся в основном или глубже биосферы (вне области жизни) или в пределах биосферы на глубине нескольких километров без участия живого вещества. Мертвые (косные) небиогенные горные породы и минералы по массе во много раз превышают массу всего живого вещества.

EdwART. Словарь экологических терминов и определений , 2010


Смотреть что такое "КОСНОЕ ВЕЩЕСТВО" в других словарях:

    По В. И. Вернадскому (1965), вещество, образуемое процессами, в которых живое, вещество не участвует (продукты тектонической деятельности, метеориты и др.). Часто вместо вещества косного употребляют термины “минеральные элементы”, “неорганическое … Экологический словарь

    Биогенное вещество это осадочные породы, состоящие из продуктов жизнедеятельности живых организмов или представляющие собой их разложившиеся остатки (известняки, ракушечные породы, горючие сланцы, ископаемые угли, нефть и др.). Биогенное… … Википедия

    Экологический словарь

    См. Вещество косное. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    1) совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. Термин введён В. И. Вернадским (См. Вернадский). Ж. в. связано с биосферой материально и энергетически посредством… …

    - (от био... и греч. sphaira шар), оболочка Земли, состав, структура и энергетика которой определяются совокупной деятельностью живых организмов. Первые представления о Б. как «области жизни» и наружной оболочке Земли восходят к Ламарку. Термин… … Биологический энциклопедический словарь

    В широком смысле всякое изменение, в узком изменение положения тела в пространстве. Д. стало универсальным принципом в философии Гераклита («все течет»). Возможность Д. отрицалась Парменидом и Зеноном из Элей. Аристотель подразделил Д. на… … Философская энциклопедия

    - (от Био... и Сфера) оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Б. охватывает часть атмосферы, гидросферу и верхнюю часть литосферы,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Биосфера (значения). Биосфера (от др. греч. βιος жизнь и σφαῖρα сфера, шар) оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их … Википедия

    Биосфера - область существования и распространения жизни на Земле. Включает нижнюю часть атмосферы (в этом смысле называемую аэробиосферой), гидросферу (гидробиосферу), поверхность суши (террабиосферу) и литосферу (литобиосферу), населенные живыми… … Начала современного естествознания

Косное вещество - совокупность тех веществ в биосфере, в образовании которых живые организмы не участвуют.[ ...]

Косное вещество - это вещество, которое образуется без участия живого вещества. Примерами косного вещества являются изверженные горные породы.[ ...]

Вещество биосферы резко и глубоко неоднородно (§ 38): живое, косное, биогенное и биокосное, Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия, по сравнению с энергией косного вещества, уже в историческом времени огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Оно живет не случайно и независимо от биосферы, но есть закономерное проявление физико-химической ее организованности. Его образование и существование есть ее главная геологическая функция (ч. II).[ ...]

Косное вещество - неживое, но связанное с жизнью вещество, к которому относятся глубинные породы, выбрасываемые вулканами; при контакте с живым веществом превращается в биокосное.[ ...]

Вещество косное - неживое вещество, в образовании которого не участвовало вещество живое.[ ...]

ЖИВОЕ ВЕЩЕСТВО - согласно В.И. Вернадскому, «совокупность всех живых организмов, в данный момент существующих, численно выраженная в элементарном химическом составе, в весе, энергии» . Ж.в. неотделимо рт биосферы, являясь одной из самых могущественных геохимических сил нашей планеты, и обладает целым рядом уникальных свойств (напр., способно поляризовать свет в отличие от косного вещества - закон Пастера-Кюри). См. Жизнь.[ ...]

Биокосное вещество-это вещество, одновременно создаваемое и живыми организмами и косными процессами. Оно, по определению В. И. Вернадского, является закономерной структурой из живого и косного вещества.[ ...]

Классификация вещества биосферы, предложенная В.И. Вернадским, с логической точки зрения не является безупречной, так как выделенные категории вещества частично перекрывают друг друга. Так, вещество космического происхождения одновременно является и косным. Атомы многих элементов являются и радиоактивными, и рассеянными одновременно. Биокосное вещество», нельзя рассматривать в качестве особого типа вещества, поскольку оно состоит из двух веществ - живого и косного. По своему характеру это не вещество, а динамическая система, что подчеркивает и сам В.И. Вернад-ский.[ ...]

В-третьих, мы имеем вещество, образуемое процессами, в которых живое вещество не участвует: косное вещество, твердое, жидкое и газообразное, из которых только газообразное и жидкое (и дисперсное твердое) являются на поверхности биосферы носителями свободной энергии.[ ...]

Планетная астрономия и живое вещество (§ 167). Создание тропосферы как функция дисперсного живого вещества в геохорах и в гидросфере (§ 168). Разнородный с точки зрения энергетического эффекта химический элементарный состав вещества биосферы: живое, косное и биокосное вещество. Различия внутри живого вещества. Химический элементарный состав живого вещества (§ 171). Различное понимание химического состава живого вещества в физиологии растений и биогеохимии (§ 172).[ ...]

Фундаментальным отличием живого вещества от косного является охваченность его эволюционным процессом, непрерывно создающим новые формы живых существ. Многообразие форм жизни и их многофункциональность создают основу устойчивого круговорота веществ и канализированных потоков энергии. В этом специфика и залог устойчивости биосферы как уникальной оболочки земного шара.[ ...]

Особой категорией является биокосное вещество. В. И. Вернадский (1926) писал, что оно «создается в биосфере одновременно живыми организмами и косными процессами, представляя системы динамического равновесия тех и других». Организмы в биомосном веществе играют ведущую роль. Биокосное вещество планеты, таким образом,- это почва, кора выветривания, все природные воды, свойства которых зависят от деятельности на Земле живого вещества. Следовательно, биосфера - это та область Земли, которая охвачена влиянием живого вещества. Жизнь на Земле-самый выдающийся процесс на ее поверхности, получающий живительную энергию Солнца и вводящий в движение едва ли не все химические элементы таблицы Менделеева.[ ...]

Сравнение химического состава живого и косного вещества Земли - земной коры и вод Мирового океана показывает несоответствие распространенности химических элементов в косных компонентах и живом веществе (рис. 2.1, а-г). Так, в земной коре содержание углерода в 70 раз ниже, чем в живом веществе, а кремния, наоборот, намного больше.[ ...]

ЭКОСИСТЕМА -совокупность биотических и косных составляющих, которая, используя внешний поток энергии, создает более сильные связи (обмен веществом и информацией) внутри себя, чем между рассматриваемой совокупностью и ее окружением, что обеспечивает неопределенно долгую саморегуляцию и развитие целого под управляющим воздействием биотических составляющих.[ ...]

Если сравнить химический состав живого и косного веществ Земли, то нетрудно увидеть их значительное несоответствие. Так, содержание углерода в живом веществе в 70 раз выше, чем в косном. Для живых существ характерна избирательность в поглощении элементов, необходимых для жизнедеятельности, что породило в биосфере проблему дефицита и ограничение количества живого вещества на Земле. Выходом из этого положения является круговорот, когда элемент, пройдя ряд биологических и химических превращений, возвращается в состав первоначального химического соединения.[ ...]

Эволюционный процесс присущ только живому веществу. В косном веществе нашей планеты нет его проявлений. Те же самые минералы и горные породы образовывались в криптозойской эре , какие образуются и теперь. Исключением являются биокосные природные тела , всегда связанные так или иначе с живым веществом.[ ...]

Главной отличительной особенностью живого вещества в целом является способ использования энергии. Живые существа - уникальные природные объекты, могущие улавливать энергию, которая приходит из Космоса преимущественно в виде солнечного света, удерживать ее в виде сложных органических соединений (биомассы), передавать друг другу, трансформировать в механическую, электрическую, тепловую и другие виды энергии. Косные (неживые) тела не способны к столь сложным преобразованиям энергии, они преимущественно рассеивают ее: камень нагревается под действием солнечной энергии, но не может ни сойти с места, ни увеличить свою массу.[ ...]

Масса биосферы, в которую включено все органическое вещество биогенного происхождения (сложная смесь природных органических соединений, основными первоисточниками которых являются растения, или, по определению В. И. Вернадского, вещество, создаваемое и перерабатываемое организмами) и косного вещества других сфер, занятых биосферой, оценивается в 2,5-3,0x1024 г. В биосфере на долю тропосферы приходится 0,004x1024 г, гидросферы - 1,4x1024 г и литосферы в пределах биосферы - 1,6x1024 г.[ ...]

Состояния пространства (симметрия), отвечающие живому веществу биосферы. Резкое отличие симметрии косных тел биосферы от симметрии ее живого вещества (§ 132, 133). Четырехмерное Эвклидово пространство- время, в котором время является четвертым измерением, и пространство- время Эйнштейна не имеют проявления в конкретных явлениях симметрии (§ 134). В живом веществе мы видим проявления не пространства только, но особого пространства - времени, отражающегося на их симметрии и выражающегося в смене поколений и в старении. Эволюционный процесс как проявление пространства - времени. Принцип Д. Дана (§ 137). Связь между живым и косным. Биогенная миграция атомов (§ 138).[ ...]

Существует несколько стандартов на питьевую воду, и мы коснемся четырех наиболее важных: российского стандарта, определяемого соответствующими ГОСТами , стандарта ВОЗ (Всемирной организации здравоохранения), стандарта США и стандарта стран Европейского Союза (ЕС). Три последних стандарта приведены в книге , благодаря которой мы можем получить информацию о том, что понимается под питьевой водой в Америке и Европе. Упомянутые мной издания построены примерно одинаково: вначале идут таблицы с перечислением вредных веществ и указанием ПДК, а затем описания методик, по которым определяется концентрация в воде того или иного компонента. В методиках подробно описано, с помощью каких реактивов и приборов и как конкретно производятся анализы. Отмечу, что в наших прежних ГОСТах таких методик около тридцати, а в книге вдвое больше.[ ...]

В биосфере происходят процессы преобразования неорганического, косного вещества в органическое и обратной перестройки органических веществ в минеральные. Движение и преобразование веществ в биосфере осуществляется при непосредственном участии живого вещества, все виды которого специализировались на различных способах питания.[ ...]

Выше, в главах XV и XVI, указано, что в явлениях жизни, в аспекте живого вещества, мы встречаемся с явлением, резко отличным от обычного косного вещества планеты и связанным с особым состоянием пространствавремени, что в сущности предвидел Л. Пастер в XIX столетии, - явления по существу космического характера.[ ...]

В предыдущей главе я глубже обосновал, что коренное отличие живого вещества от косного связано с особым состоянием пространства (§ 132-133), занимаемого его телами, и что это пространство не может быть Эвклидовым пространством трех измерений и ярко выражается как особое пространство - время. До сих пор мы не знаем пока других явлений на нашей планете, которые бы отвечали тоже неэвклидовому пространству (§ 144).[ ...]

Здесь мы встречаемся как раз с тем явлением, которое характеризует живое вещество планеты и резко химически отличает его от ее косного вещества. Оно заключается в следующем, В то самое время, как количество минералов - химических соединений, им отвечающих, - исчисляется немногими тысячами (§ 188), число различных природных органических соединений, строящих тело живого вещества, исчисляется сотнями тысяч, вернее миллионами, так как в них сказывается индивидуальность, которая в такой степени никогда не встречается в минералах, где есть индивидуальность месторождений, но не индивидуальность особей.[ ...]

КРУГОВОРОТ БИОГЕОХИМИЧЕСКИЙ - это перемещения и превращения химических элементов через косную и органическую природу при активном участии живого вещества. Химические элементы циркулируют в биосфере по различным путям биологического круговорота: поглощаются живым веществом и заряжаются энергией, затем покидают живое вещество, отдавая накопленную энергию во внешнюю среду. Такие в большей или меньшей степени замкнутые пути были названы В.И.Вернадским “биогеохимическими циклами". Эти циклы можно подразделить на два основных типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре. Во всех биогеохимических циклах активную роль играет живое вещество. По этому поводу В.И.Вернадский (1965, с. 127) писал: “Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени ”. К главным циклам можно отнести круговороты углерода, кислорода, азота, фосфора, серы и биогенных катионов. Ниже рассмотрим в качестве примера основные черты круговорота типичных биофильных элементов (углерода, кислорода и фосфора), играющих существенную роль в жизни биосферы.[ ...]

В.И. Вернадский рассматривал биосферу как область жизни, основа которой - взаимодействие живого и косного вещества: «живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей... Организмы представляют живое вещество, т.е. совокупность всех живых организмов, в данный момент существующих, численно выраженное в элементарном химическом составе, в весе, энергии. Оно связано с окружающей средой биогенным током атомов: своим дыханием, питанием, размножением». Таким образом, по мнению В.И. Вернадского, биогенная миграция атомов химических элементов, вызываемая солнечной энергией и проявляющаяся в процессе обмена веществ, роста и размножения организмов, является главной функцией биосферы.[ ...]

В конце концов все химические элементы Менделеевской таблицы, по-видимому, закономерно охвачены живым веществом. Это может служить косвенным подтверждением тому, что отличие живого и косного вещества планеты связано не с различием физико-химических проявлений, а с более общим различием состояния пространства-времени этих материал ьно-энергетических систем (§ И4).[ ...]

В биохимических функциях первого и второго рода мы впервые встречаемся в яркой форме с резким отличием косного и живого вещества в ходе геологического времени. В то самое время, как живое вещество меняется до неузнаваемости в своих формах и непрерывно и закономерно дает нам миллионы новых видов организмов и множество новых химических соединений, охваченное эволюционным процессом, косная материя планеты остается инертной, неподвижной и по характеру происходящих реакций только в эомы веков закономерно меняет свой атомный состав закономерным радиоактивным процессом, только что начинающим перед нами вскрываться (ч. I, гл. В геологическое время она практически остается неизменной в своем морфологическом характере. По сравнению с вечно подвижным и меняющимся химически и морфологически миром животных организмов, мир минералов остается неподвижным и неизменным с археозоя, за исключением биогенных минералов, которые создаются биохимической функцией второго рода (§ 195).[ ...]

Надо прежде всего построить ту геометрию, которая может соответствовать состоянию пространства живого вещества. При этом просто становится понятной обособленность живого вещества в окружающей его косной среде и принцип Реди , что живое всегда происходит из живого и что нет абиогенеза.[ ...]

Экосистема - единый природный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные компоненты связаны обменом веществ и энергии. Экосистема является саморазвивающейся термодинамически открытой системой. В отечественной литературе используется эквивалентное понятие "биогеоценоз".[ ...]

Точный учет - дело будущего. А пока приходится довольствоваться приблизительным учетом процентного содержания живого вещества в окружающей его косной природе. Такие подсчеты были мною несколько раз сделаны, и я приведу цифры для того, чтобы читатель имел ясное понятие, о чем идет речь.[ ...]

Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий в экотоксикологии, как вредное вещество или токсикант - загрязнитель, метаболизм, канцерогенез, токсичность как результат избытка необходимых веществ и соединений, биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.[ ...]

Почва (по В. И. Вернадскому) - биокосное тело природы, занимающее промежуточное положение между биологическими организмами и косными телами (горные породы, минералы). Является гигантской экологической системой, активно участвует в круговороте веществ и энергии в природе, поддерживает газовый состав атмосферы. Важнейшее свойство почвы - плодородие (способность обеспечить рост и размножение растений) нарушается в результате антропогенной деятельности: выпас скота, вспахивание, выращивание монокультур, уплотнение, нарушение гидрологического режима (уровня грунтовых вод), загрязнение. В связи с тем, что почва - это основа биологического круговорота, она становится источником миграции загрязненных веществ в гидросферу, атмосферу, в продукты питания (через растения и животных). Строительство дороги в результате указанных выше причин приводит к снижению плодородия почв.[ ...]

Это выражается в том, как я уже указал, что мы нигде не наблюдаем в природе абиогенеза - образования живого организма прямо из косной среды, что связь живого вещества с окружающей его косной средой проявляется только в биогенном токе атомов. Организмы размножаются поколениями, рождаются. Это процесс, как мы теперь знаем, длится миллиарды лет, и мы не знаем нигде на Земле следов времени, где бы живого вещества не было (§ 114-116).[ ...]

Под влиянием жизни значительная часть атомов, составляющих земную поверхность, находится в непрерывном, интенсивном движении. Живое вещество обладает способностью к пластичному изменению, приспособлению к изменениям среды, имеет свой процесс эволюции, проявляющийся в изменении с ходом геологического времени, вне зависимости от изменения среды. На протяжении геологического времени возрастает сила влияния живого вещества на биосферу, увеличивается его воздействие на косное вещество биосферы. Благодаря эволюции видов, непрерывно идущей и никогда не прекращающейся, резко меняется воздействие живого вещества на окружающую среду, распространяясь на все природные биокосные и биогенные тела, играющие основную роль в биосфере, в почвы, в наземные и подземные воды. Почвы и реки девона, например, иные, чем почвы третичного времени и нашей эпохи. Эволюция биосферы сама по себе вызывает усиление эволюционного процесса живого вещества.[ ...]

Можно проследить во всей биосфере, таким образом,- подчеркивает В. И. Вернадский,- порожденное жизнью движение молекул; оно охватывает собой всю стратосферу, всю область океанов, живую природу суши. Можно уловить его проявление в свободной атмосфере - в стратосфере и дальше до самой крайней границы планеты. Мы можем доказать его влияние далеко за пределами области жизни в глубоких слоях Земли, в совершенно для нас чуждых областях метаморфизма» . Огромная геохимическая роль живого вещества определяется тем, что элементы находятся в нем в более энергетическом состоянии (обусловленном аккумуляцией солнечной энергии), чем в косном веществе.[ ...]

Биогеоценоз (от био, греч. geo - земля и koinos - сообщество). Однородный участок земной поверхности с определенным составом живых (биоценозов) и косных (приземной слой атмосферы, солнечная энергия, почва и др.) компонентов, объединенных обменом вещества и энергии в единый природный комплекс. Термин предложен В.Н. Сукачевым. Совокупность биогеоценозов образует биогеоценотический noipoe земли, т.е. всю биосферу, а отдельный биогеоценоз представляет собой ее элементарную единицу.[ ...]

Все экологические факторы в общем случае могут быть разделены на две крупные категории: абиотические (или абиогенные) -факторы неживой или косной природы: климатические, космические, почвенные; биотические (или биогенные) - факторы живой природы. К абиотическим компонентам относятся вещество и энергия, к биотическим - гены, клетки, органы, организмы, популяции, сообщества.[ ...]

Таким образом, В. И. Вернадский подчеркивает планетарный и космический характер биосферы. Важнейшим положением учения о биосфере является то, что атомы из живого вещества переходят в косное вещество биосферы и обратно, т. е. происходит обмен веществ. Этот переход атомов выражается в непрекращаю-щемся никогда дыхании, питании, размножении, причем эти процессы поддерживаются и создаются космической энергией Солнца.[ ...]

В.И.Вернадский назвал биосферой оболочку Земли, в формировании которой живые организмы играли и играют основную роль. Он отмечал, что биосфера состоит из нескольких типов веществ: биогенного, косного, биокосного и живого. Биогенное вещество - геологические породы (уголь, нефть, известняк и др.), созданные деятельностью живых организмов и служащие мощным источником энергии. Косное вещество образовано в ходе процессов без участия живых тел.[ ...]

В.И. Вернадский подчеркивал, что «биосфера - это наружная оболочка Земли, область распространения жизни, включающая в себя все живые организмы, а также всю неживую среду их обитания, при этом между косными природными телами и живыми веществами идет непрерывный материальный и энергетический обмен, выражающийся в движении атомов, вызванном живым веществом. Этот обмен в ходе времени выражается закономерно меняющимся, непрерывно стремящимся к устойчивости равновесием». Далее в основном рассматриваются общие закономерности взаимоотношений природы и человеческого общества.[ ...]

Наряду с динамичностью, биогеоценозам присуща и устойчивость во времени, которая обусловлена тем, что современные природные биогеоценозы - результат длительной и глубокой адаптации живых компонентов друг к другу и к компонентам косной среды. Поэтому биогеоценозы, выведенные из устойчивого состояния той или иной причиной, после ее устранения могут восстанавливаться в форме, близкой к исходной, и вернуться снова к исходным уровням величины ассимиляции трофических уровней экологической пирамиды. Поэтому ввиду того, что ассимиляция является присущим всему, живому процессом, представляющим собой одну из сторон обмена веществ и энергии с образованием сложных веществ, составляющих организмы из более простых, и активно откликается на возмущения нооценозов, то привлечение ее для оценки нарушений, загрязнений, воздействий и преобразований нооценозами экологических систем представляется весьма оправданным подходом.[ ...]

Симметрия в системе наук как учение о геометрических свойствах состояний земных, т. е. геологических пространств, их сложности и неоднородности (§ 125). Логика естествознания. История симметрии: бытовое понимание и развитие его в науке. Разная симметрия живых веществ и природных косных тел (§ 126). Кристаллические пространства и федоровские группы (§ 127). Реальный и идеальный монокристалл. Проявления времени. Идеальные и реальные кристаллические пространства (§ 128). Диссимметрия Кюри и Пастера и состояния пространства (§ 129).[ ...]

Биосферой (греч. bios-жизнь, sphaira-шар) называют ту часть земного шара, в пределах которой существует жизнь, представляющую собой оболочку Земли, состоящую из атмосферы, гидросферы и верхней части литосферы, которые взаимно связаны сложными биохимическими циклами миграции вещества и энергии. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний - высокой температурой земных недр (свыше 100° С). Крайних пределов ее достигают только низшие организмы - бактерии. В. И. Вернадский, создатель современного учения о биосфере, подчеркивал, что биосфера включает в себя собственно "живую пленку" Земли (сумму населяющих Землю в каждый данный момент живых организмов, "живое вещество" планеты) и область "былых сфер", очерченную распределением на Земле биогенных осадочных пород. Таким образом, биосфера - это специфическим образом организованное единство всего живого и минеральных элементов. Взаимодействие между ними проявляется в потоках энергии и вещества за счет энергии солнечного излучения. Биосфера является самой крупной (глобальной) экосистемой Земли - областью системного взаимодействия живого и косного вещества на планете. По определению В. И. Вернадского, "пределы биосферы обусловлены прежде всего полем существования жизни".[ ...]

В.И. Вернадский. По его определению, биосфера - наружная оболочка (сфера) Земли, область распространения жизни (bios -жизнь). По последним данным, толщина биосферы 40...50 км. Она включает нижнюю часть атмосферы (до высоты 25...30 км, т.е. до озонового слоя), практически всю гидросферу (реки, моря и океаны) и верхнюю часть земной коры - литосферу (до глубины 3 км). Важнейшими компонентами биосферы являются: живое вещество (растения, животные и микроорганизмы); биогенное вещество (органические и органоминеральные продукты, созданные живыми организмами на протяжении геологической истории, -каменный уголь, нефть, торф и др.); косное вещество (горные породы неорганического происхождения и вода); биокосное вещество (продукт синтеза живого и неживого, т.е. осадочные породы, почвы, илы). Вернадский доказал, что все три оболочки Земли связаны с живым веществом, которое оказывает непрерывное воздействие на неживую природу.

gastroguru © 2017