Магнитные свойства веществ. Классификация веществ по магнитным свойствам

МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Простейшие проявления магнетизма известны очень давно и знакомы большинству из нас. Однако объяснить эти, казалось бы, простые явления на основе фундаментальных принципов физики удалось лишь сравнительно недавно. Существуют магниты двух разных видов. Одни - так называемые постоянные магниты, изготовляемые из "магнитно-твердых" материалов. Их магнитные свойства не связаны с использованием внешних источников или токов. К другому виду относятся так называемые электромагниты с сердечником из "магнитно-мягкого" железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.
Магнитные полюса и магнитное поле. Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец - южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются. Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний - одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита. Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.) М. Фарадей (1791-1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины. Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I, расположен перпендикулярно линиям индукции, то по закону Ампера сила F, действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение

Где F - сила в ньютонах, I - ток в амперах, l - длина в метрах. Единицей измерения магнитной индукции является тесла (Тл)
(см. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ).
Гальванометр. Гальванометр - чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Намагничивающая сила и напряженность магнитного поля. Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков - величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки. В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н:

Где m0 - т.н. магнитная постоянная, имеющая универсальное значение 4pЧ10-7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н. Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже). На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.



Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894-1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902-1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.
Магнитная проницаемость и ее роль в магнетизме. Магнитная проницаемость m - это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями - от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B, но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770° С для Fe, 358° С для Ni, 1120° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей - в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля. На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1) намагничивание идет по штриховой линии 1-2, причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B(H) уже не следует по прежнему пути, а проходит через точку 3, обнаруживая как бы "память" материала о "прошлой истории", откуда и название "гистерезис". Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1-3). После изменения направления намагничивающего поля на обратное кривая В (Н) проходит точку 4, причем отрезок (1)-(4) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (-H) приводит кривую гистерезиса в третий квадрант - участок 4-5. Следующее за этим уменьшение величины (-H) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6, 7 и 2.



Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов - таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.



Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой - сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).
Теории магнетизма. Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория "увяла". В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное "трение". Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и "размножение" магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.



Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению "магнитного заряда" полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами. В 1907 П. Вейс ввел понятие "домена", ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших "колоний" атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10-6 мм3. Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. "Стенка" и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой "переходные слои", в которых происходит изменение направления намагниченности доменов.



В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.



Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,б). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,в). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,г), итогом чего оказывается слабый магнетизм.



Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них - так называемый эффект Баркгаузена, второе - метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности. Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe3O4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля - на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал. Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве "элементарных магнитов" рассматриваются именно электроны как носители спина. Для пояснения этой концепции рассмотрим (рис. 8) свободный атом железа - типичного ферромагнитного материала. Две его оболочки (K и L), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй - восемь электронов. В K-оболочке спин одного из электронов положителен, а другого - отрицателен. В L-оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех - отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В M-оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой - в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней N-оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.



Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А. Эйнштейном и В.де Гаазом, а другой - С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.



За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.
МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Одно из первых обширных и систематических исследований магнитных свойств вещества было предпринято П.Кюри. Он установил, что по своим магнитным свойствам все вещества можно разделить на три класса. К первому относятся вещества с резко выраженными магнитными свойствами, подобными свойствам железа. Такие вещества называются ферромагнитными; их магнитное поле заметно на значительных расстояниях (см. выше). Во второй класс попадают вещества, называемые парамагнитными; магнитные свойства их в общем аналогичны свойствам ферромагнитных материалов, но гораздо слабее. Например, сила притяжения к полюсам мощного электромагнита может вырвать из ваших рук железный молоток, а чтобы обнаружить притяжение парамагнитного вещества к тому же магниту, нужны, как правило, очень чувствительные аналитические весы. К последнему, третьему классу относятся так называемые диамагнитные вещества. Они отталкиваются электромагнитом, т.е. сила, действующая на диамагнетики, направлена противоположно той, что действует на ферро- и парамагнетики.
Измерение магнитных свойств. При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них -измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца. Ко второму относятся измерения "резонансных" частот, связанных с намагничением вещества. Атомы представляют собой крошечные "гироскопы" и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением R = mv/eB, где m - масса частицы, v - ее скорость, e - ее заряд, а B - магнитная индукция поля. Частота такого кругового движения равна


где f измеряется в герцах, e - в кулонах, m - в килограммах, B - в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными "естественным" частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором - циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне). Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.



Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов. Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 1010 Гц/Тл для намагниченности, связанной с электронами, и порядка 107 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов. Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных "гироскопов" образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.



Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.
Расчет магнитных свойств. Магнитная индукция поля Земли составляет 0,5*10 -4 Тл, тогда как поле между полюсами сильного электромагнита - порядка 2 Тл и более. Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био - Савара - Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I (ампер), на расстоянии r (метров) от провода равна


Индукция в центре кругового витка радиуса R с током I равна (в тех же единицах):

Плотно намотанная катушка провода без железного сердечника называется соленоидом. Магнитная индукция, создаваемая длинным соленоидом c числом витков N в точке, достаточно удаленной от его концов, равна

Здесь величина NI/L есть число ампер (ампер-витков) на единицу длины соленоида. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю. Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M.



Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M. В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m0(H + Ha), или B = m0(H + M). Отношение M/H называется магнитной восприимчивостью и обозначается греческой буквой c; c - безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.
Величина B/H, характеризующая магнитные свойства
материала, называется магнитной проницаемостью и обозначается через ma, причем ma = m0m, где ma - абсолютная, а m - относительная проницаемости, m = 1 + c. В ферромагнитных веществах величина c может иметь очень большие значения -до 10 4-10 6. Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных - немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3). Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены. - поля с напряжённостью Н?0,5=1,0 МЭ (граница условна). Нижнее значение С. м. п. соответствует макс. значению стационарного поля =500 кЭ, к рое может быть доступно средствам совр. техники, верхнее полю 1 МЭ, даже кратковрем. воздействие к рого… … Физическая энциклопедия

Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

Раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

- (от древнегреч. physis природа). Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина физика сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства… … Энциклопедия Кольера

Термин момент применительно к атомам и атомным ядрам может означать следующее: 1) спиновый момент, или спин, 2) магнитный дипольный момент, 3) электрический квадрупольный момент, 4) прочие электрические и магнитные моменты. Различные типы… … Энциклопедия Кольера

Электрический аналог ферромагнетизма. Подобно тому как в ферромагнитных веществах при помещении их в магнитное поле проявляется остаточная магнитная поляризация (момент), в сегнетоэлектрических диэлектриках, помещенных в электрическое поле,… … Энциклопедия Кольера

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this. OK

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДНИЕ ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ГОУ ВПО ВГУ)

Геологический факультет

Кафедра экологической геологии

Реферат

по теме: Магнитные свойства веществ

Выполнила: студентка I курса, гр. №9

Агошкова Екатерина Владимировна

Рецензент:

Доцент, кандидат наук Воронова Т.А.

Магнитные свойства веществ

Магнитная проницаемостью вещества

Классификация веществ по действию на них внешнего магнитного поля

Антиферромагнетики и ферримагнетики

Постоянные магниты

Точка Кюри

Литература

Магнитные свойства веществ

Магнетизм -- форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля.

Магнитные свойства вещества объясняются согласно гипотезе Ампера.

Гипотеза Ампера - магнитные свойства тела можно объяснить циркулирующими внутри него токами.

Внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.

1. если вещество не обладает магнитными свойствами - элементарные магнитные поля несориентированы (из-за теплового движения);

2. если вещество обладает магнитными свойствами - элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

Намагниченным называется то вещество, которое создает собственное магнитное поле. Намагниченность возникает, если вещество поместить во внешнее магнитное поле.

магнетизм ампер антиферромагнетика кюри

Магнитн ая проницаемостью вещества

Влияние вещества на внешнее магнитное поле характеризуется величиной м , которая называется магнитной проницаемостью вещества .

Магнитная проницаемость -- это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

где B? -- магнитная индукция поля в веществе; B? 0 -- магнитная индукция поля в вакууме.

Классификация веществ по действию на них внешнего магнитного поля

1. Д иамагнетики [м<1]- слабомагнитные вещества, внутреннее магнитное поле направлено противоположно внешнему магнитному полю, но слабовыраженно. Вещества, которые имеют отрицательную магнитную восприимчивость, не зависящую от напряженности магнитного поля.

Отрицательная магнитная восприимчивость - это когда к телу подносится магнит, и оно при этом отталкивается, а не притягивается.

К диамагнетикам относятся, например, инертные газы, водород, фосфор, цинк, золото, азот, кремний, висмут, медь, серебро. То есть это вещества, которые находятся в сверхпроводящем состоянии или имеющие ковалентные связи.

2. П арамагнетики [м>1] - слабомагнитные вещества, внутреннее магнитное поле направлено также, как и внешнее магнитное поле. У этих веществ магнитная восприимчивость тоже не зависит от того, какая напряженность поля существует. Она при этом положительная. То есть при сближении парамагнетика с постоянно действующим магнитом, возникает сила притягивания. К ним можно отнести алюминий, платину, кислород, марганец, железо.

3. Ф ерромагнетики [м>>1] - сильномагнитные вещества, внутреннее магнитное поле в 100-1000 раз больше внешнего магнитного поля.

У этих веществ, в отличие от диамагнетиков и парамагнетиков, магнитная восприимчивость зависит от температуры и напряженности магнитного поля, причем в значительной мере.

К ним относятся кристаллы никеля и кобальта.

Антиферромагнетики и ферримагнетики

Вещества, у которых во время нагревания совершается фазовый переход данного вещества, сопровождающегося появлением парамагнитных свойств, называются антиферромагнетиками . Если температура становится, ниже какой-то определенной, эти свойства у вещества наблюдаться не будут. Примерами этих веществ будут марганец и хром.

Магнитная восприимчивость ферримагнетиков тоже зависит от температур и напряженности магнитного поля. Но отличия у них все же, есть. К этим веществам можно отнести различные оксиды.

Все вышеперечисленные магнетики можно еще разделить на 2 категории:

Магнитотвердые материалы. Это материалы с высоким значением коэрцитивной силы. Для их перемагничивания необходимо создать мощное магнитное поле. Эти материалы применяются в изготовлении постоянных магнитов.

Магнитомягкие материалы , напротив, имеют маленькую коэрцитивную силу. При слабых магнитных полях они способны войти в насыщение. На перемагничивание у них малые потери. Из-за этого эти материалы применяются для изготовления сердечников для электрических машин, которые работают на переменном токе. Это, например, трансформатор тока и напряжения, или генератор, или асинхронный двигатель.

Постоянные магнит ы

Постоянные магниты - это тела, длительное время сохраняющие намагниченность.

Постоянный магнит всегда имеет 2 магнитных полюса: северный (N) и южный (S).

Наиболее сильно магнитное поле постоянного магнита у его полюсов.

Постоянные магниты изготавливают обычно из железа, стали, чугуна и других сплавов железа (сильные магниты), а также из никеля, кобальта (слабые магниты). Магниты бывают естественные (природные) из железной руды магнитного железняка и искусственные, полученные намагничиванием железа при внесении его в магнитное поле.

Взаимодействие магнитов : одноименные полюса отталкиваются, а разноимённые полюса притягиваются.

Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой.

Магнитное поле постоянных магнитов

В чем причины намагничивания железа? Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси. При движении электронов возникает элементарные магнитные поля. При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.

Как выглядит магнитное поле постоянных магнитов?

Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками.

Для постоянного полосового магнита Для постоянного дугообразного магнита

Точка Кюри

Точка Кюри , или температура Кюри , -- температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества при изменении температуры, но при заданных значениях других термодинамических параметров (давлении, напряженности электрического или магнитного поля). Фазовый переход второго рода при температуре Кюри связан с изменением свойств симметрии вещества. При Т с во всех случаях фазовых переходов исчезает какой-либо тип атомной упорядоченности, например, упорядоченность электронных спинов (сегнетоэлектрики ), атомных магнитных моментов (ферромагнетики ), упорядоченность в расположении атомов разных компонент сплава по узлам кристаллической решетки (фазовые переходы в сплавах). Вблизи Т с наблюдаются резкие аномалии физических свойств, например, пьезоэлектрических, электрооптических, тепловых.

Магнитной точкой Кюри называют температуру такого фазового перехода, при котором исчезает спонтанная намагниченность доменов ферромагнетиков, и ферромагнетик переходит в парамагнитное состояние. При сравнительно низких температурах тепловое движение атомов, которое неизбежно приводит к некоторым нарушениям упорядоченного расположения магнитных моментов, незначительно. При увеличении температуры его роль возрастает и, наконец, при некоторой температуре (Т с) тепловое движение атомов способно разрушить упорядоченное расположение магнитных моментов, и ферромагнетик превращается в парамагнетик. Вблизи точки Кюри наблюдается ряд особенностей в изменении и немагнитных свойств ферромагнетиков (удельного сопротивления, удельной теплоемкости, температурного коэффициента линейного расширения).

Величина Т с зависит от прочности связи магнитных моментов друг с другом, в случае прочной связи достигает: для чистого железа Т с = 768 о С, для кобальта Т с =1131 о С, превышает 1000 о С для железо-кобальтовых сплавов. Для многих веществ Т с невелика (для никеля Т с =358 о С). По величине Т с можно оценить энергию связи магнитных моментов друг с другом. Для разрушения упорядоченного расположения магнитных моментов необходима энергия теплового движения, намного превосходящая как энергию взаимодействия диполей, так и потенциальную энергию магнитного диполя в поле.

При температуре Кюри магнитная проницаемость ферромагнетика становится примерно равной единице, выше точки Кюри изменение магнитной восприимчивости подчиняется закону Кюри-Вейса .

Для каждого ферромагнетика существует определенная температура - точка Кюри.

1. Если t вещества < t Кюри, то вещество обладает ферромагнитными свойствами.

2. Если t вещества > t Кюри, то ферромагнитные свойства (намагниченность) исчезают, и вещество становится парамагнетиком. Поэтому постоянные магниты при нагревании теряют свои магнитные свойства.

Литература

Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. -- Мн.: Нар. асвета, 2002. -- С. 291-297.

http://msk.edu.ua/

http://elhow.ru/

http://class-fizika.narod.ru/

Размещено на Allbest.ru

Подобные документы

    Магнитное поле - составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация , добавлен 16.11.2011

    Сущность магнитного поля, его основные характеристики. Понятия и классификация магнетиков - веществ, способных намагничиваться во внешнем магнитном поле. Структура и свойства материалов. Постоянные и электрические магниты и области их применения.

    реферат , добавлен 02.12.2012

    Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа , добавлен 17.01.2011

    Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко - вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация , добавлен 17.11.2010

    Понятие и действие магнитного поля, его характеристики: магнитная индукция, магнитный поток, напряжённость, магнитная проницаемость. Формулы магнитной индукции и правило "левой руки". Элементы и типы магнитных цепей, формулировка их основных законов.

    презентация , добавлен 27.05.2014

    Действие силового поля в пространстве, окружающем токи и постоянные магниты. Основные характеристики магнитного поля. Гипотеза Ампера, закон Био-Савара-Лапласа. Магнитный момент рамки с током. Явление электромагнитной индукции; гистерезис, самоиндукция.

    презентация , добавлен 28.07.2015

    Основные понятия, виды (диамагнетики, ферримагнетики, парамагнетики, антиферромагнетики) и условия проявления магнетизма. Природа ферромагнитного состояния веществ. Сущность явления магнитострикции. Описание доменных структур в тонких магнитных пленках.

    реферат , добавлен 30.08.2010

    Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.

    контрольная работа , добавлен 10.10.2010

    Изучение явления диамагнетизма и парамагнетизма. Магнитная восприимчивость атомов химических элементов. Магнитный атомный порядок и спонтанная намагниченность у ферромагнитных минералов. Твердая, жидкая и газовая фазы. Магнитные свойства осадочных пород.

    презентация , добавлен 15.10.2013

    Понятие и основные свойства магнитного поля, изучение замкнутого контура с током в магнитном поле. Параметры и определение направления вектора и линий магнитной индукции. Биография и научная деятельность Андре Мари Ампера, открытие им силы Ампера.

Любое вещество, помещенное в магнитное поле, влияет на значение магнитной индукции этого поля. Например, при внесе­нии железного сердечника в катушку (соленоид) с током индук­ция магнитного поля соленоида сильно возрастает, а сам сердеч­ник приобретает свойство притягивать мелкие железные предме­ты, т. е. намагничивается. Это явление было впервые обнаружено Ампером.

Впоследствии было установлено, что индукция магнитного поля в веществе может быть и больше и меньше, чем индукция того же поля в вакууме. Происходит это потому, что каждое вещество в большей или меньшей степени обладает магнитными свойствами. Вещества, способные изменять параметры магнитного поля, принято называть магнетиками.

Для характеристики магнитных свойств вещества введена величина, называемая магнитной проницаемостью этого вещества.

Магнитная проницаемость вещества – это физическая величина, показывающая, во сколько раз индукция магнитного поля в данной точке однородной изотропной среды отличается по модулю от индукции магнитного поля в этой же точке в вакууме : .

Вещества, у которых , называют диамагнетиками. К ним относятся, например, элементы , , , , , , , инертные газы и другие вещества.

Вещества, у которых , называют парамагнетиками. К ним, в частности, относятся , , , , , , , кисло­род и многие другие элементы, а также растворы некоторых солей.

Следует отметить, что значение у диа- и парамагнетиков отличается от единицы очень мало, всего на величину порядка , поэтому диа- и парамагнетики относятся к слабомаг­нитным веществам.

Вещества, у которых , называют ферромагнетиками. К ним относятся элементы , , , и многие сплавы. (При очень низких температурах ферромагнитные свойства обнару­живают элементы , , и .)

Значения у некоторых сплавов достигают десятков тысяч. Поэтому ферромагнетики относятся к сильномагнитным ве­ществам.

· Магнитный момент – векторная величи­на, характеризующая магнит­ные свойства тел и частиц вещества. Магнитным моментом обладают все элементарные частицы и образованные из них системы (атомные ядра, атомы, молекулы). Каждый электрон, движущийся в атоме вокруг ядра по замкнутой орбите, представляет собой электронный ток, текущий в направ­лении, противоположном движению электрона. Магнитный момент электрон­ного тока называется орбитальным магнитным моментом электрона. Электрон, также, независимо от его пребывания в какой-либо системе частиц (атом, молекула, кристалл), обладает собственным механическим моментом количества движения , называе­мым спином. Элементарное представление о спине связывается с вращением электрона вокруг собствен­ной оси.

Если в какой-либо системе электронов (атом, кристалл) имеется четное число электронов, то спины каждой пары электронов, направленные в противоположные стороны, дают суммарный спин, равный нулю. Такая система назы­вается скомпенсированной по спину. При нечетном числе электронов система имеет нескомпенсированный спин, от­личный от нуля.

Наличием у электрона и некоторых других элементар­ных частиц спина объясняются многие важные закономерности в современной физике. Например, спином электрона объясняются магнитные свойства ферромагнети­ков.

Векторная сумма всех орбитальных и спиновых моментов электронов вну­три молекулы или атома и представляет собой маг­нитный момент частицы.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном

Ферромагнетизм

Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка . Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.

1.2 Магнитные свойства различных веществ

Все вещества – твердые, жидкие и газообразные в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.

К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью μ, в тысячи и даже десятки тысяч раз большей магнитной проницаемости неферромагнитных веществ, и хорошо притягиваются к магнитам и электромагнитам.

К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Относительная магнитная проницаемость μ у них несколько больше единицы. Парамагнитные материалы притягиваются к магнитам и электромагнитам в тысячи раз слабее, чем ферромагнитные материалы.

Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр. Относительная магнитная проницаемость μ у них несколько меньше единицы.

Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок. Основными характеристиками их являются: кривая намагничивания, ширина петли гистерезиса и потери мощности при перемагничивании.

Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания в соответствии с рисунком 1.5-а, которая представляет собой зависимость индукции В от напряженности Н магнитного поля. Так как напряженность магнитного поля определяется силой тока, посредством которого намагничивается ферромагнитный материал, эту кривую можно рассматривать как зависимость индукции от намагничивающего тока I.

Кривую намагничивания можно разбить на три участка: Оа, на котором магнитная индукция возрастает почти пропорционально намагничивающему току (напряженности поля); а-б, на котором рост магнитной индукции замедляется («колено» кривой намагничивания), и участок магнитного насыщения за точкой б, где зависимость В от H становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля по сравнению с первым и вторым участками кривой.

Следовательно, при большом насыщении ферромагнитные вещества по способности пропускать магнитный поток приближаются к неферромагнитным материалам (магнитная проницаемость их резко уменьшается). Магнитная индукция, при которой происходит насыщение, зависит от рода ферромагнитного материала.


Рисунок 1.5 – Кривая намагничивания ферромагнитного материала (а) и петля гистерезиса (б)

Чем больше индукция насыщения ферромагнитного материала, тем меньший намагничивающий ток требуется для создания в нем заданной индукции и, следовательно, тем лучше он пропускает магнитный поток.

Магнитную индукцию в электрических машинах, аппаратах и приборах выбирают в зависимости от предъявляемых к ним требований. Если необходимо, чтобы случайные колебания намагничивающего тока мало влияли на магнитный поток данной машины или аппарата, то выбирают индукцию, соответствующую условиям насыщения (например, в генераторах постоянного тока с параллельным возбуждением). Если желательно, чтобы индукция и магнитный поток изменялись пропорционально намагничивающему току (например, в электроизмерительных приборах), то выбирают индукцию, соответствующую прямолинейному участку кривой намагничивания.

Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рисунке 1.5-б показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I или напряженности магнитного поля Н).

Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в), будет больше индукции, полученной при намагничивании (участки О-а и д-а). Когда напряженность поля (намагничивающий ток) будет доведена до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение Вr соответствующее отрезку Об. Это значение называется остаточной индукцией.

Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока – остаточным магнетизмом.

При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Нс, при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а, получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания.

Следовательно, при перемагничивании ферромагнитного вещества, например при постепенном намагничивании и размагничивании стального сердечника электромагнита, кривая изменения индукции будет иметь вид петли; ее называют петлей гистерезиса.

При периодическом перемагничивании ферромагнитного вещества затрачивается определенная энергия, которая выделяется в виде тепла, вызывая нагревание ферромагнитного вещества. Потери энергии, связанные с процессом перемагничивания стали, называют потерями на гистерезис. Значение этих потерь при каждом цикле перемагничивания пропорционально площади петли гистерезиса. Потери мощности на гистерезис пропорциональны квадрату максимальной индукции В mах и частоте перемагничивания f. Поэтому при значительном увеличении индукции в магнитопроводах электрических машин и аппаратов, работающих в переменном магнитном поле, эти потери резко возрастают.

Рисунок 1.6 – Распределение магнитных силовых линий в кольце из ферромагнитного материала

Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т.е. индукция магнитного поля внутри тела и вблизи него возрастает.

Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут в соответствии с рисунком 1.6, и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.

Намагничивание вещества. Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничеваются т. е. сами становятся источниками магнитного поля. В результате этого вектор магнитной индукции при наличии вещества отличается от вектора магнитной индукции в вакууме.

Гипотеза Ампера. Причина, вследствие которой тела обладают магнитными свойствами, была установлена французским ученым Ампером . Сначала, под непосредственным впечатлением от наблюдения за поворачивающейся вблизи проводника с током магнитной стрелкой в опытах Эрстеда Лмиер предположил, что магнетизм Земли вызван токами, проходящими внутри земного шара. Главный шаг был сделан: магнитные свойства тела можно объяснить циркулирующими внутри него токами. Далее Ампер пришел к общему заключению: магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Этот решающий шаг от возможности объяснения магнитных свойств тела токами к категорическому утверждению, что магнитные взаимодействия - это взаимодействия токов, - свидетельство большой научной смелости Ампера.

Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. (Теперь мы хорошо знаем, что эти токи образуются вследствие движения электронов в атомах.) Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу из-за теплового движения молекул (рис. 1.28, а), то их действия взаимно компенсируются, и никаких магнитных свойств тело не обнаруживает. В намагниченном состоянии элементарные токи в теле ориентированы так, что их действия складываются (рис. 1.28, б).

Гипотеза Ампера объясняет, почему магнитная стрелка и рамка (контур) с током в магнитном поле ведут себя одинаково (см. § 2). Стрелку можно рассматривать как совокупность маленьких контуров с током, ориентированных одинаково.

Наиболее сильные магнитные поля создают вещества, называемые ферромагнетиками. Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения.

Собственный вращательный момент (момент импульса) электрона называется спином. Электроны всегда как бы вращаются вокруг своей оси и, обладая зарядом, создают магнитное поле наряду с полем, появляющимся за счет их орбитального движения вокруг ядер. В ферромагнетиках существуют области с параллельными ориентациями спинов, называемые доменами; размеры доменов порядка 0,5 мкм. Параллельная ориентация спинов обеспечивает минимум потенциальной энергии. Если ферромагнетик не намагничен, то ориентация доменов хаотична, и суммарное магнитное поле, создаваемое доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля.

Температура Кюри. При температурах, больших некоторой определенной для данного ферромагнетика, его ферромагнитные свойства исчезают. Эту температуру называют температурой Кюри по имени открывшего данное явление французского ученого. Если достаточно сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000 °С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики и их применение. Хотя ферромагнитных тел в природе не так уж много, именно их магнитные свойства получили наибольшее практическое применение. Железный или стальной сердечник в катушке во много раз усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты.

Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.

Большое применение получили ферриты ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Один из известных ферромагнитных материалов - магнитный железняк - является ферритом.

Магнитная запись информации. Из ферромагнегикои изготовляют магнитные ленты и тонкие магнитные пленки. Магнитные ленты широко используют для звукозаписи в магнитофонах и для видеозаписи в видеомагнитофонах.

Магнитная лента представляет собой гибкую основу из полихлорвинила или других веществ. На нее наносится рабочий слой в виде магнитного лака, состоящего из очень мелких игольчатых частиц железа или другого ферромагнетика и связующих веществ.

Запись звука производят на ленту с помощью электромагнита, магнитное поле которого изменяется в такт со звуковыми колебаниями. При движении ленты вблизи магнитной головки различные участки пленки намагничиваются. Схема магнитной индукционной головки показана на рисунке 1.29, а, где 1 - сердечник электромагнита; 2 - магнитная лента; 3 - рабочий зазор; 4 - обмотка электромагнита.

При воспроизведении звука наблюдается обратный процесс: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают на динамик магнитофона.

Тонкие магнитные пленки состоят из слоя ферромагнитного материала толщиной от 0,03 до 10 мкм.


Их применяют в запоминающих устройствах электронно-вычислительных машин (ЭВМ). Магнитные пленки предназначены для записи, хранения и воспроизведения информации . Их наносят на тонкий алюминиевый диск или барабан. Информацию записывают и воспроизводят примерно так же, как и в обычном магнитофоне. Запись информации в ЭВМ можно производить и на магнитные ленты.

Развитие технологии магнитной записи привело к появлению магнитных микроголовок, которые используются в ЭВМ, позволяющих создавать немыслимую ранее плотность магнитной записи. На ферромагнитном жестком диске диаметром меньше 8 см хранится до нескольких терабайт (10 12 байт) информации. Считывание и запись информации на таком диске осуществляется с помощью микроголовки, расположенной на поворотном рычаге (рис. 1.29, б). Сам диск вращается с огромной скоростью, и головка плавает над ним в потоке воздуха, что предотвращает возможность механического повреждения диска.

Все вещества, помещенные в магнитное поле, создают собственное поле. Наиболее сильные поля создают ферромагнетики. Из них делают постоянные магниты, так как поле ферромагнетика не исчезает после выключения намагничивающего поля. Ферромагнетики широко применяются на практике.


1. Какие вещества называют ферромагнетиками!
2. Для каких целей применяют ферромагнитные материалы!
3. Как осуществляется запись информации в ЭВМ!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
gastroguru © 2017