Курсовая работа лазерное излучение. Физические свойства лазерного излучения Свойства лазерного излучения применение лазеров

1. Прохождение монохроматического света через прозрачную среду.

2. Создание инверсной населенности. Способы накачки.

3. Принцип действия лазера. Типы лазеров.

4. Особенности лазерного излучения.

5. Характеристики лазерного излучения, применяемого в медицине.

6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения.

7. Использование лазерного излучения в медицине.

8. Основные понятия и формулы.

9. Задачи.

Мы знаем, что свет испускается отдельными порциями - фотонами, каждый из которых возникает в результате излучательного перехода атома, молекулы или иона. Естественный свет - это совокупность огромного числа таких фотонов, различающихся по частоте и фазе, испущенных в случайные моменты времени в случайных направлениях. Получение мощных пучков монохроматического света с помощью естественных источников - задача практически неразрешимая. В то же время потребность в таких пучках ощущалась как физиками, так и специалистами многих прикладных наук. Создание лазера позволило решить эту задачу.

Лазер - устройство, генерирующее когерентные электромагнитные волны за счет вынужденного излучения микрочастиц среды, в которой создана высокая степень возбуждения одного из энергетических уровней.

Лазер (LASER Light Amplification by Stimulated of Emission Radiation) - усиление света с помощью вынужденного излучения.

Интенсивность лазерного излучения (ЛИ) во много раз превосходит интенсивность естественных источников света, а расходимость лазерного луча менее одной угловой минуты (10 -4 рад).

31.1. Прохождение монохроматического света через прозрачную среду

В лекции 27 мы выяснили, что прохождение света через вещество сопровождается как фотонным возбуждением его частиц, так и актами вынужденного излучения. Рассмотрим динамику этих процессов. Пусть в среде распространяется монохроматический свет, частота которого (ν) соответствует переходу частиц этой среды с основного уровня (E 1) на возбужденный (Е 2):

Фотоны, попадающие в частицы, находящиеся в основном состоянии, будут поглощаться, а сами частицы будут переходить в возбужденное состояние Е 2 (см. рис. 27.4). Фотоны, которые попадают в возбужденные частицы, инициируют вынужденное излучение (см. рис. 27.5). При этом происходит удвоение фотонов.

В состоянии теплового равновесия соотношение между числом возбужденных (N 2) и невозбужденных (N 1) частиц подчиняется распределению Больцмана:

где k - постоянная Больцмана, T - абсолютная температура.

При этом N 1 >N 2 и поглощение доминирует над удвоением. Следовательно, интенсивность выходящего света I будет меньше интенсивности падающего света I 0 (рис. 31.1).

Рис. 31.1. Ослабление света, проходящего через среду, в которой степень возбуждения менее 50 % (N 1 > N 2)

По мере поглощения света степень возбуждения будет расти. Когда она достигнет 50 % (N 1 = N 2), между поглощением и удвоением установится равновесие, так как вероятности попадания фотонов в возбужденную и невозбужденную частицы станут одинаковыми. Если освещение среды прекратится, то через некоторое время среда вернется в начальное состояние, соответствующее распределению Больцмана (N 1 > N 2). Сделаем предварительный вывод:

При освещении среды монохроматическим светом (31.1) невозможно добиться такого состояния среды, при котором степень возбуждения превышает 50 %. И все-таки давайте рассмотрим вопрос о прохождении света через среду, в которой каким-то способом достигнуто состояние N 2 > N 1 . Такое состояние называется состоянием с инверсной населенностью (от лат. inversio - переворачивание).

Инверсная населенность - такое состояние среды, при котором число частиц на одном из верхних уровней больше, чем на нижнем.

В среде с инверсной населенностью вероятность попадания фотона в возбужденную частицу больше, чем в невозбужденную. Поэтому процесс удвоения доминирует над процессом поглощения и имеет место усиление света (рис. 31.2).

По мере прохождения света через среду с инверсной населенностью степень возбуждения будет снижаться. Когда она достигнет 50%

Рис. 31.2. Усиление света, проходящего через среду с инверсной населенностью (N 2 > N 1)

(N 1 = N 2), между поглощением и удвоением установится равновесие и эффект усиления света исчезнет. Если освещение среды прекратится, то через некоторое время среда вернется в состояние, соответствующее распределению Больцмана (N 1 > N 2).

Если вся эта энергия выделится в излучательных переходах, то мы получим световой импульс огромной мощности. Правда, он еще не будет обладать требуемой когерентностью и направленностью, но будет в высокой степени монохроматичен (hv = E 2 - E 1). Это еще не лазер, но уже нечто близкое.

31.2. Создание инверсной населенности. Способы накачки

Так можно ли добиться инверсной населенности? Оказывается, можно, если использовать три энергетических уровня со следующей конфигурацией (рис. 31.3).

Пусть среда освещается мощной вспышкой света. Часть спектра излучения будет поглощена в переходе с основного уровня Е 1 на широкий уровень Е 3 . Напомним, что широким является энергетический уровень с малым временем релаксации. Поэтому большинство частиц, попавших на уровень возбуждения Е 3 , безызлучательно переходит на узкий метастабильный уровень Е 2 , где происходит их накопление. Вследствие узости этого уровня лишь малая доля фотонов вспышки

Рис. 31.3. Создание инверсной населенности на метастабильном уровне

способна вызвать вынужденный переход Е 2 → Е 1 . Этим и обеспечиваются условия для создания инверсной населенности.

Процесс создания инверсной населенности называется накачкой. В современных лазерах применяются различные виды накачки.

Оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.

Электроразрядная накачка газовых активных сред использует электрический разряд.

Инжекционная накачка полупроводниковых активных сред использует электрический ток.

Химическая накачка активной среды из смеси газов использует энергию химической реакции между компонентами смеси.

31.3. Принцип действия лазера. Типы лазеров

Функциональная схема лазера показана на рис. 31.4. Рабочее тело (активная среда) представляет собой длинный узкий цилиндр, торцы которого закрыты двумя зеркалами. Одно из зеркал (1) полупрозрачно. Такая система называется оптическим резонатором.

Система накачки переводит частицы с основного уровня Е 1 на поглощательный уровень Е 3 , откуда они безызлучательно переходят на метастабильный уровень Е 2 , создавая его инверсную населенность. После этого начинаются спонтанные излучательные переходы Е 2 → Е 1 с испусканием монохроматических фотонов:

Рис. 31.4. Схематическое устройство лазера

Фотоны спонтанного излучения, испущенные под углом к оси резонатора, выходят через боковую поверхность и в процессе генерации не участвуют. Их поток быстро иссякает.

Фотоны, которые после спонтанного излучения движутся вдоль оси резонатора, многократно проходят через рабочее тело, отражаясь от зеркал. При этом они взаимодействуют с возбужденными частицами, инициируя вынужденное излучение. За счет этого происходит «лавинообразное» нарастание индуцированных фотонов, движущихся в том же направлении. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая мощный пучок почти параллельных когерентных лучей. Фактически лазерное излучение порождается первым спонтанным фотоном, который движется вдоль оси резонатора. Это и обеспечивает когерентность излучения.

Таким образом, лазер преобразует энергию источника накачки в энергию монохроматического когерентного света. Эффективность такого преобразования, т.е. КПД, зависит от типа лазера и лежит в диапазоне от долей процента до нескольких десятков процентов. У большинства лазеров КПД составляет 0,1-1 %.

Типы лазеров

Первый созданный лазер (1960 г.) использовал в качестве рабочего тела рубин и оптическую систему накачки. Рубин - это кристаллическая окись алюминия А1 2 О 3 , содержащая около 0,05 % атомов хрома (именно хром придает рубину розовый цвет). Атомы хрома, внедренные в кристаллическую решетку, являются активной средой

с конфигурацией энергетических уровней, изображенной на рис. 31.3. Длина волны излучения рубинового лазера равна λ = 694,3 нм. Затем появились лазеры, использующие другие активные среды.

В зависимости от типа рабочего тела лазеры делятся на газовые, твердотельные, жидкостные, полупроводниковые. В твердотельных лазерах активный элемент обычно изготавливается в виде цилиндра, длина которого много больше его диаметра. Газовые и жидкие активные среды помещают в цилиндрическую кювету.

В зависимости от способа накачки можно получить непрерывную и импульсную генерацию лазерного излучения. При непрерывной системе накачки инверсия населенности поддерживается длительное время за счет внешнего источника энергии. Например, непрерывное возбуждение электрическим разрядом в газовой среде. При импульсной системе накачки инверсия населенности создается в импульсном режиме. Частота следования импульсов от 10 -3

Гц до 10 3 Гц.

31.4. Особенности лазерного излучения

Лазерное излучение по своим свойствам значительно отличается от излучения обычных источников света. Отметим его характерные особенности.

1. Когерентность. Излучение является высококогерентным, что обусловлено свойствами вынужденного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. 31.5, а).

2. Коллимированность. Лазерное излучение является коллимированным, т.е. все лучи в пучке почти параллельны друг другу (рис. 31.5, б). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре. Так как угол расходимости φ мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Это позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

3. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, т.е. содержит волны практически одинаковой частоты (ширина спектральной линии составляет Δλ ≈0,01 нм). На

рисунке 31.5, в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

Рис. 31.5. Когерентность (а), коллимированность (б), монохроматичность (в) лазерного излучения

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов - монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

4. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так, неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3х10 -12 с. Мощность в импульсе равна Р = Е/t = 2,5х10 13 Вт (для сравнения: мощность ГЭС составляет Р ~10 9 Вт).

5. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

6. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

7. Давление. При падении лазерного луча на поверхность тела создается давление (Д). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, создается давление Д = I/c, где I -интенсивность излучения, с - скорость света в вакууме. При полном отражении величина давления в два раза больше. Для интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 ; Д = 3,3х10 9 Па = 33 000 атм.

8. Поляризованность. Лазерное излучение полностью поляризовано.

31.5. Характеристики лазерного излучения, применяемого в медицине

Длина волны излучения

Длины волн излучения (λ) медицинских лазеров лежат в диапазоне 0,2 -10 мкм, т.е. от ультрафиолетовой до дальней инфракрасной области.

Мощность излучения

Мощность излучения (P) медицинских лазеров варьируется в широких пределах, определяемых целями применения. У лазеров с непрерывной накачкой Р = 0,01-100 Вт. Импульсные лазеры характеризуются мощностью в импульсе Р и и длительностью импульса τ и

Для хирургических лазеров Р и = 10 3 -10 8 Вт, а длительность импульса т и = 10 -9 -10 -3 с.

Энергия в импульсе излучения

Энергия одного импульса лазерного излучения (Е и) определяется соотношением Е и = Р и -т и, где т и - длительность импульса излучения (обычно т и = 10 -9 -10 -3 с). Для хирургических лазеров Е и = 0,1-10 Дж.

Частота следования импульсов

Эта характеристика (f) импульсных лазеров показывает количество импульсов излучения, генерируемых лазером за 1 с. Для терапевтических лазеров f = 10-3 000 Гц, для хирургических f = 1-100 Гц.

Средняя мощность излучения

Эта характеристика (Р ср) импульсно-периодических лазеров показывает, какую энергию лазер излучает за 1 с, и определяется следующим соотношением:

Интенсивность (плотность мощности)

Эта характеристика (I) определяется как отношение мощности лазерного излучения к площади поперечного сечения пучка. Для непрерывных лазеров I = P/S. В случае импульсных лазеров различают интенсивность в импульсе I и = P и /S и среднюю интенсивность I ср = Р ср /S.

Интенсивность хирургических лазеров и давление, создаваемое их излучением, имеют следующие значения:

для непрерывных лазеров I ~ 10 3 Вт/см 2 , Д = 0,033 Па;

для импульсных лазеров I и ~ 10 5 -10 11 Вт/см 2 , Д = 3,3 - 3,3х10 6 Па.

Плотность энергии в импульсе

Эта величина (W) характеризует энергию, которая приходится на единицу площади облучаемой поверхности за один импульс и определяется соотношением W = E и /S, где S (см 2) - площадь светового пятна (т.е. поперечного сечения лазерного луча) на поверхности биоткани. У лазеров, используемых в хирургии, W ≈ 100 Дж/см 2 .

Параметр W можно рассматривать как дозу облучения D за 1 импульс.

31.6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения

Изменение температуры и свойств ткани

под действием непрерывного лазерного излучения

Поглощение мощного лазерного излучения биологической тканью сопровождается выделением теплоты. Для расчета выделяющейся теплоты используют специальную величину - объемную плотность теплоты (q).

Выделение теплоты сопровождается повышением температуры и в тканях протекают следующие процессы:

при 40-60°С имеют место активация ферментов, образование отеков, изменение и в зависимости от времени действия гибель клеток денатурация протеина, начало коагуляции и некрозы;

при 60-80°С - денатурация коллагена, дефекты мембран; при 100°С - обезвоживание, выпаривание тканевой воды; свыше 150°С - обугливание;

свыше 300°С - выпаривание ткани, газообразование. Динамика протекания этих процессов изображена на рис. 31.6.

Рис. 31.6. Динамика изменения температуры ткани под воздействием непрерывного лазерного излучения

1 фаза. Сначала температура ткани повышается от 37 до 100 °С. В этом диапазоне температур термодинамические свойства ткани остаются практически неизменными, и происходит линейный рост температуры со временем (α = const и I = const).

2 фаза. При температуре 100 °С начинается выпаривание тканевой воды, и до окончания этого процесса температура остается постоянной.

3 фаза. После выпаривания воды температура вновь начинает расти, но медленнее, чем на участке 1, так как обезвоженная ткань поглощает энергию слабее нормальной.

4 фаза. По достижении температуры Т ≈ 150 °С начинается процесс обугливания и, следовательно, «почернения» биоткани. При этом коэффициент поглощения α возрастает. Поэтому наблюдается нелинейный, ускоряющийся со временем рост температуры.

5 фаза. По достижении температуры Т ≈ 300 °С начинается процесс испарения обезвоженной обугленной биоткани и рост температуры вновь прекращается. Именно в этот момент лазерный луч рассекает (удаляет) ткань, т.е. становится скальпелем.

Степень повышения температуры зависит от глубины залегания ткани (рис. 31.7).

Рис. 31.7. Процессы, протекающие в облучаемых тканях на различной глубине: а - в поверхностном слое ткань нагревается до нескольких сотен градусов и испаряется; б - мощность излучения, ослабленного верхним слоем, недостаточна для испарения ткани. Происходит коагуляция ткани (иногда совместно с обугливанием - черная жирная линия); в - происходит нагревание ткани вследствие передачи теплоты из зоны (б)

Протяженности отдельных зон определяются как характеристиками лазерного излучения, так и свойствами самой ткани (в первую очередь коэффициентами поглощения и теплопроводности).

Воздействие мощного сфокусированного пучка лазерного излучения сопровождается и возникновением ударных волн, которые могут стать причиной механического повреждения прилегающих тканей.

Абляция ткани под воздействием мощного импульсного лазерного излучения

При воздействии на ткань коротких импульсов лазерного излучения с высокой плотностью энергии реализуется другой механизм рассечения и удаления биоткани. В этом случае происходит очень быстрый нагрев тканевой жидкости до температуры Т > Т кип. При этом тканевая жидкость оказывается в метастабильном перегретом состоянии. Затем происходит «взрывное» вскипание тканевой жидкости, которое сопровождается удалением ткани без обугливания. Это явление называется абляцией. Абляция сопровождается генерацией механических ударных волн, способных вызвать механическое повреждение тканей в окрестностях зоны лазерного воздействия. Этот факт необходимо учитывать при выборе параметров импульсного лазерного излучения, например при шлифовке кожи, сверлении зубов или при лазерной коррекции остроты зрения.

31.7. Использование лазерного излучения в медицине

Процессы, характеризующие взаимодействие лазерного излучения (ЛИ) с биообъектами, можно разделить на 3 группы:

невозмущающее воздействие (не оказывающее заметного действия на биообъект);

фотохимическое действие (возбужденная лазером частица либо сама принимает участие в соответствующих химических реакциях, либо передает свое возбуждение другой частице, участвующей в химической реакции);

фоторазрушение (за счет выделения тепла или ударных волн).

Лазерная диагностика

Лазерная диагностика представляет собой невозмущающее воздействие на биообъект, использующее когерентность лазерного излучения. Перечислим основные методы диагностики.

Интерферометрия. При отражении лазерного излучения от шероховатой поверхности возникают вторичные волны, которые интерферируют между собой. В результате образуется картина темных и светлых пятен (спеклов), расположение которых дает информацию о поверхности биообъекта (метод спеклоинтерферометрии).

Голография. С помощью лазерного излучения получают 3-мерное изображение объекта. В медицине этот метод позволяет получать объемные изображения внутренних полостей желудка, глаза и т.д.

Рассеяние света. При прохождении остронаправленного лазерного пучка через прозрачный объект происходит рассеяние света. Регистрация угловой зависимости интенсивности рассеянного света (метод нефелометрии) позволяет определять размеры частиц среды (от 0,02 до 300 мкм) и степень их деформации.

При рассеянии может изменяться поляризация света, что также используется в диагностике (метод поляризационной нефелометрии).

Эффект Доплера. Этот метод основан на измерении доплеровского сдвига частоты ЛИ, который возникает при отражении света даже от медленно движущихся частиц (метод аненометрии). Таким способом измеряется скорость кровотока в сосудах, подвижность бактерий и т.д.

Квазиупругое рассеяние. При таком рассеянии происходит незначительное изменение длины волны зондирующего ЛИ. Причина этого - изменение в процессе измерения рассеивающих свойств (конфигурации, конформации частиц). Временные изменения параметров рассеивающей поверхности проявляются в изменении спектра рассеяния по сравнению со спектром подающего излучения (спектр рассеяния либо уширяется, либо в нем появляются дополнительные максимумы). Данный метод позволяет получать информацию о меняющихся характеристиках рассеивателей: коэффициенте диффузии, скорости направленного транспорта, размерах. Так осуществляется диагностика макромолекул белков.

Лазерная масс-спектроскопия. Этот метод используют для исследования химического состава объекта. Мощные пучки лазерного излучения испаряют вещество с поверхности биообъекта. Пары подвергают масс-спектральному анализу, по результатам которого судят о составе вещества.

Лазерный анализ крови. Лазерный луч, пропускаемый через узкий кварцевый капилляр, по которому прокачивается специально обработанная кровь, вызывает флуоресценцию ее клеток. Флуоресцентное свечение затем улавливается чувствительным датчиком. Это свечение специфично для каждого типа клеток, проходящих поодиночке через сечение лазерного луча. Подсчитывается общее число клеток в заданном объеме крови. Определяются точные количественные показатели по каждому типу клеток.

Метод фоторазрушения. Его используют для исследования поверхностного состава объекта. Мощные пучки ЛИ позволяют брать микропробы с поверхности биообъектов путем испарения вещества и последующего масс-спектрального анализа этого пара.

Использование лазерного излучения в терапии

В терапии используются низкоинтенсивные лазеры (интенсивность 0,1-10 Вт/см 2). Низкоинтенсивное излучение не вызывает заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра эффекты облучения обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечи-

Рис. 31.8. Схема применения лазерного источника для внутрисосудистого облучения крови

вающими точную локализацию и дозировку воздействия. В качестве примера на рис. 31.8 приведена схема использования источника лазерного излучения для внутрисосудистого облучения крови у больных с сердечной недостаточностью.

Ниже указаны наиболее распространенные методы лазеротерапии.

Терапия с помощью красного света. Излучение Не-Ne лазера с длиной волны 632,8 нм используется с противовоспалительной целью для лечения ран, язв, ишемической болезни сердца. Лечебный эффект связан с влиянием света этой длины волны на пролиферативную активность клетки. Свет выступает в роли регулятора клеточного метаболизма.

Терапия с помощью синего света. Лазерное излучение с длиной волны в синей области видимого света используется, например, для лечения желтухи новорожденных. Это заболевание - следствие резкого возрастания в организме концентрации билирубина, который имеет максимум поглощения в синей области. Если облучать детей лазерным излучением такого диапазона, то билирубин распадается, образуя водорастворимые продукты.

Лазерофизиотерапия - использование лазерного излучения при сочетании с различными методами электрофизиотерапии. Некоторые лазеры имеют магнитные насадки для сочетанного действия лазерного излучения и магнитного поля - магнитолазеротерапии. К ним относится магнито-инфракрасный лазерный терапевтический аппарат «Мильта».

Эффективность лазеротерапии увеличивается при сочетанном воздействии с лекарственными веществами, предварительно нанесенными на облучаемую зону (лазерофорез).

Фотодинамическая терапия опухолей. Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом. ФДТ основана на применении локализующихся в опухолях фотосенсибилизаторов, повышающих чувствительность тканей при их

последующем облучении видимым светом. Разрушение опухолей при ФДТ основано на трех эффектах: 1) прямое фотохимическое уничтожение клеток опухоли; 2) повреждение кровеносных сосудов опухоли, приводящее к ишемии и гибели опухоли; 3) возникновение воспалительной реакции, мобилизирующей противоопухолевую иммунную защиту тканей организма.

Для облучения опухолей, содержащих фотосенсибилизаторы, используется лазерное излучение с длиной волны 600-850 нм. В этой области спектра глубина проникновения света в биологические ткани максимальна.

Фотодинамическая терапия применяется при лечении опухолей кожи, внутренних органов: легких, пищевода (при этом к внутренним органам лазерное излучение доставляется с помощью световодов).

Использование лазерного излучения в хирургии

В хирургии высокоинтенсивные лазеры используются для рассечения тканей, удаления патологических участков, остановки кровотечения, сваривания биотканей. Выбирая должным образом длину волны излучения, его интенсивность и длительность воздействия, можно получать различные хирургические эффекты. Так, для разрезания биологических тканей используется сфокусированный луч непрерывного СО 2 -лазера, имеющего длину волны λ = 10,6 мкм, мощность 2х10 3 Вт/см 2 .

Применение лазерного луча в хирургии обеспечивает избирательное и контролируемое воздействие. Лазерная хирургия имеет ряд преимуществ:

Бесконтактность, дающую абсолютную стерильность;

Селективность, позволяющую выбором длины волны излучения дозированно разрушать патологические ткани, не затрагивая окружающие здоровые ткани;

Бескровность (за счет коагуляции белков);

Возможность микрохирургических воздействий, благодаря высокой степени фокусировки луча.

Укажем некоторые области хирургического применения лазеров.

Лазерная сварка тканей. Соединение рассеченных тканей представляет собой необходимый этап многих операций. На рисунке 31.9 показано, как сваривание одного из стволов крупного нерва осуществляется в контактном режиме с использованием припоя, который

Рис. 31.9. Сваривание нерва при помощи лазерного луча

каплями из пипетки подается по месту лазирования.

Разрушение пигментированных участков. Лазеры, работающие в импульсном режиме, используются для разрушения пигментированных участков. Данный метод (фототермолиз) используется для лечения ангиом, татуировок, склеротических бляшек в кровеносных сосудах и т.п.

Лазерная эндоскопия. Внедрение эндоскопии произвело коренной переворот в оперативной медицине. Чтобы избежать больших открытых операций, лазерное излучение доставляется к месту воздействия с помощью волоконно-оптических световодов, которые позволяют подводить лазерное излучение к биотканям внутренних полых органов. При этом значительно снижается риск инфицирования и возникновения послеоперационных осложнений.

Лазерный пробой. Короткоимпульсные лазеры в сочетании со световодами применяют для удаления бляшек в сосудах, камней в желчном пузыре и почках.

Лазеры в офтальмологии. Использование лазеров в офтальмологии позволяет выполнять бескровные оперативные вмешательства без нарушения целостности глазного яблока. Это операции на стекловидном теле; приваривание отслоившейся сетчатки; лечение глаукомы путем «прокалывания» лазерным лучом отверстий (диаметром 50÷100 мкм) для оттока внутриглазной жидкости. Послойная абляция тканей роговицы применяется при коррекции зрения.

31.8. Основные понятия и формулы

Окончание таблицы

31.9. Задачи

1. В молекуле фенилаланина разница энергий в основном и возбужденном состояниях составляет ΔЕ = 0,1 эВ. Найти соотношение между заселенностями этих уровней при Т = 300 К.

Ответ: n = 3,5*10 18 .

Особенности лазерного излучения и разновидно­сти лазеров .

Лазеры породили новые технологии с уни­кальными возможностями. В чем же необыкновенные свойства лазерного излуче­ния, лазерного луча ?

Во-первых, лазерный луч распро­страняется, почти не расширяясь. Слово «почти» озна­чает, что пучок лазерного света не совсем параллель­ный: существует угол расхождения, но он сравнительно мал - около 10 ^ (-5) рад и тем не менее, на больших рас­стояниях он ощутим: на Луне такой пучок, направлен­ный с Земли, дает пятно диаметром примерно 3 км.

Во-вторых, свет лазера обладает исключительной монохроматичностью, т. е. он имеет только одну длину волны, один цвет. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Благодаря такому свойству лазерного луча стала воз­можной оптическая запись информации с высокой плотностью - крохотные оптические диски вмещают громадное количество информации - сотни мегабайт.

В-третьих, лазер - самый мощный источник све­та. В узком интервале спектра кратковременно (10 ^(-11)с) достигается мощность излучения 10 ^ 12- 10 ^ 13 Вт с одно­го квадратного сантиметра, в то время как мощность излучения Солнца с той же площади равна только 7 10 ^ 3 Вт, причем суммарно по всему спектру.

Разновидности лазеров

    В 1960 г. Т. Мейман (США) создал первый лазер - рубиновый , работающий в импульсном режиме . Но все-таки это короткий световой импульс. Им мож­но пробить отверстие, сварить две металлические проволоки и сделать много других полезных дел.

    газо­вые лазеры . Газовый лазер был создан почти одновре­менно с рубиновым, в том же 1960 г. Он работал на смеси гелия и неона. Современные газовые лазеры работают на многих газах и парах. Все они дают непрерывное излучение в очень широком диапазоне длин волн: от ультрафиолетового до инфракрасного света.

    газодинамический лазер , похожий на ре­активный двигатель. В его камере сгорания сжига­ется угарный газ (окись углерода) с добавкой топли­ва (керосина, бензина, спирта). Получившаяся при этом смесь газов состоит из углекислого газа, азота и паров воды. Проносясь между зеркалами, молеку­лы газа излучают энергию в виде световых квантов, рождая лазерный луч мощностью 150 - 200 кВт. И это мощность не отдельной вспышки, а постоянного, ус­тойчивого луча, сияющего, пока у лазера не кончит­ся горючее.

    полупроводниковые лазе­ры тоже дают непрерывное излучение. Полупроводниковый лазер создал в 1962 г. американский ученый Р. Холл. На нем основана оптическая запись, о которой знают многие пользователи персональных компьютеров, дер­жавшие в руках лазерный диск, привлекательный не только своим внешним видом, но и своей информаци­онной емкостью: на диске диаметром 12 см можно записать сотни тысяч страниц текста.

    ла­зеры на красителях (жидкостные лазеры). Называются они так потому, что их рабочей жидкостью являются растворы анилиновых красителей в воде, спирте, кислоте и других раствори­телях. Жидкостные лазеры могут излучать импульсы света различной длины волны (от ультрафиолетового до инфракрасного света) и мощностью от сотен кило­ватт до нескольких мегаватт в зависимости от вида красителя.

Разрабатываются химические лазеры, в ко­торых атомы переходят в возбужденное состояние при действии энергии накачки химических реакций. Боль­шое внимание уделяется разработке мощных химичес­ких лазеров, преобразующих энергию химической реакции в когерентное излучение, и атомному лазеру, излучающему не свет, а пучок атомов.

Устройство лазера и свойства вынужденного излучения обуславливают отличие лазерного излучения от излучения обычных источников света. Лазерное излучение (ЛИ) характеризуется следующими важнейшими свойствами.

1. Высококогерентностъ. Излучение является высококогерентным, что обусловлено свойствами вынужденного индуцированного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. а) (в следствии пространственной когерентности излучение может быть сфокусировано в очень малом объеме).

2. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, то есть содержит волны практически одинаковой частоты (фотоны имеют одинаковую энергию). Это обусловлено тем, что вынужденное излучение связано с дублированием фотонов (каждый индуцированный фотон полностью подобен первоначальному). При этом формируется электромагнитная волна постоянной частоты. Ширина спектральной линии составляет 0,01 нм. На рис. в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов – монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

3. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3·10 –12 с. Мощность в импульсе равна Р = E/t = 2,5·10 13 Вт (для сравнения: мощность ГЭС Р ~ 10 9 Вт).

4. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

5. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

6. Давление. Лазерный луч при падении на поверхность оказывает давление (р). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, величина создается давление р = I /с, где I – интенсивность излучения, с – скорость света в вакууме. При полном отражении величина давления в два раза больше. При интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 , р = 3,3·10 9 Па = 33000 атм.

7. Малый угол расходимости в пучке. Коллимированностъ. Излучение является коллимированным, то есть все лучи в пучке почти параллельны друг другу (рис.6). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре (для большинства лазеров угол расходимости составляет 1 угловую минуту или меньше). Так как угол расходимости мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Остронаправленность позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

8. Поляризованностъ. Лазерное излучение полностью поляризовано.

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора - оптического квантового генератора, или лазера.

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего усиление света в результате вынужденного излучения”.

Действительно, основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы)

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.

Если число возбужденных атомов велико и существует инверсная выделенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем, невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет все нарастающую лавину появления идентичных фотонов. Произойдет усиление спонтанного излучения.

На возможность усиления света в среде с инверсной населенностью за счет вынужденного испускания впервые указал в 1939 г. советский физик

В.А. Фабрикант, предложивший создавать инверсную населенность в электрическом разряде в газе.

При одновременном рождении (принципиально это возможно) большого числа спонтанно испущенных фотонов возникнет большое число лавин, каждая из которых будет распространяться в своем направлении, заданном первоначальным фотоном соответствующей лавины. В результате мы получим потоки квантов света, но не сможем получить ни направленного луча, ни высокой монохроматичности, так как каждая лавина инициировалась собственным первоначальным фотоном. Для того чтобы среду с инверсной населенностью можно было использовать для генерации лазерного луча, т. е. направленного луча с высокой монохроматичностью, необходимо “снимать” инверсную населенность с помощью первичных фотонов, уже обладающих одной и той же энергией, совпадающей с энергией данного перехода в атоме. В этом случае мы будем иметь лазерный усилитель света.

Существует, однако, и другой вариант получения лазерного луча, связанный с использованием системы обратной связи. Спонтанно родившиеся фотоны, направление распространения которых не перпендикулярно плоскости зеркал, создадут лавины фотонов, выходящие за пределы среды. В то же время фотоны, направление распространения которых перпендикулярно плоскости зеркал, создадут лавины, многократно усиливающиеся в среде вследствие многократного отражения от зеркал. Если одно из зеркал будет обладать небольшим пропусканием, то через него будет выходить направленный поток фотонов перпендикулярно плоскости зеркал. При правильно подобранном пропускании зеркал, точной их настройке относительно друг друга и относительно продольной оси среды с инверсной населенностью обратная связь может оказаться настолько эффективной, что излучением “вбок” можно будет полностью пренебречь по сравнению с излучением, выходящим через зеркала. На практике это, действительно, удается сделать. Такую схему обратной связи называют оптическим резонатором, и именно этот тип резонатора используют в большинстве существующих лазеров.

В 1955 г. одновременно и независимо Н.Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США был предложен принцип создания первого в мире генератора квантов электромагнитного излучения на среде с инверсной населенностью, в котором вынужденное испускание в результате использования обратной связи приводило к генерации чрезвычайно монохроматического излучения.

Спустя несколько лет, в 1960 г., американским физиком Т. Мейманом был запущен первый квантовый генератор оптического диапазона - лазер, в котором обратная связь осуществлялась с помощью описанного выше оптического резонатора, а инверсная населенность возбуждалась в кристаллах рубина, облучаемых излучением ксеноновой лампы-вспышки. Рубиновый кристалл представляет собой кристалл оксида алюминия АL2О3 с небольшой добавкой = О,05% хрома. При добавлении атомов хрома прозрачные кристаллы рубина приобретают розовый цвет и поглощают излучение в двух полосах ближней ультрафиолетовой области спектра. Всего кристаллами рубина поглощается около 15% света лампы-вспышки. При поглощении света ионами хрома происходит переход ионов в возбужденное состояние. В результате внутренних процессов возбужденные ионы хрома переходят в основное состояние не сразу, а через два возбужденных уровня. На этих уровнях происходит накопление ионов, и при достаточно мощной вспышке ксеноновой лампы возникает инверсная населенность между промежуточными уровнями и основным уровнем ионов хрома.

Торцы рубинового стержня полируют, покрывают отражающими интерференционными пленками, выдерживая при этом строгую параллельность торцов друг другу.

При возникновении инверсии населенностей уровней ионов хрома в рубине происходит лавинное нарастание числа вынужденно испущенных фотонов, и обратной связи на оптическом резонаторе, образованном зеркалами на торцах рубинового стержня, обеспечивает формирование узконаправленного луча красного света. Длительность лазерного импульса==0.0001 с, немного короче длительности вспышки ксеноновой лампы. Энергия импульса рубинового лазера около 1ДЖ.

С помощью механической системы (вращающееся зеркало) или быстродействующего электрического затвора можно “включить “ обратную связь (настроить одно из зеркал) в момент достижения максимальной инверсии населенностей и, следовательно, максимального усиления активной среды. В этом случае мощность индуцированного излучения будет чрезвычайно велика и инверсия населенности “снимется” вынужденным излучением за очень короткое время.

В этом режиме модулированной добротности резонатора излучается гигантский импульс лазерного излучения. Полная энергия этого импульса останется приблизительно на том же уровне, что и в режиме “свободной генерации”, но вследствие сокращения в сотни раз длительности импульса также в сотни раз возрастает мощность излучения, достигая значения =100000000Вт.

Рассмотрим некоторые уникальные свойства лазерного излучения.

При спонтанном излучении атом излучает спектральную линию конечной ширины. При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать, прежде всего, в центре спектральной линии данного атомного перехода, и в результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. На практике в специальных условиях удается сделать относительную ширину спектральной линии лазерного излучения в 1*10000000-1*100000000 раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе.

Кроме сужения линии излучения в лазере удается получить расходимость луча менее 0,00001 радиана, т. е. на уровне угловых секунд.

Известно, что направленный узкий луч света можно получить в принципе от любого источника, поставив на пути светового потока ряд экранов с маленькими отверстиями, расположенными на одной прямой. Представим себе, что мы взяли нагретое черное тело и с помощью диафрагм получили луч света, из которого посредством призмы или другого спектрального прибора выделили луч с шириной спектра, соответствующей ширине спектра лазерного излучения. Зная мощность лазерного излучения, ширину его спектра и угловую расходимость луча, можно с помощью формулы Планка вычислить температуру воображаемого черного тела, использованного в качестве источника светового луча, эквивалентного лазерному лучу. Этот расчет приведет нас к фантастической цифре: температура черного тела должна быть порядка десятков миллионов градусов! Удивительное свойство лазерного луча - его высокая эффективная температура (даже при относительно малой средней мощности лазерного излучения или малой энергии лазерного импульса) открывает перед исследователями большие возможности, абсолютно неосуществимые без использования лазера.

Лазеры различаются: способом создания в среде инверсной населенности, или, иначе говоря, способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.); рабочей средой (газы, жидкости, стекла, кристаллы, полупроводники и т.д.); конструкцией резонатора; режимом работы (импульсный, непрерывный). Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями.

Лазер - это генератор оптических волн, использующий энергию индуцированно излучающих атомов или молекул в средах с инверсной заселенностью уровней энергии, обладающие свойством усиливать свет конкретных длин волн. Чтобы многократно усилить свет применяют оптический резонатор, который состоит из 2 зеркал. За счет различных способов накачки в активном элементе создается активная среда.

Рисунок 1 - Схема устройства лазера

За счет перечисленных условий в лазере генерируется спектр, который показан на рисунке 2 (число мод лазера регулируется длиной резонатора):

Рисунок 2 - Спектр продольных мод лазера

Лазеры обладают высокой степенью монохроматичности, высокой степенью направленности и поляризованности излучения при значительной его интенсивности и яркости, высокой степенью временной и пространственной когерентности, могут перестраиваться по длинам волн, могут излучать световые импульсы рекордно короткой длительности, в отличие от тепловых источников света .

В течение всего времени развития лазерных технологий был создан большой перечень лазеров и лазерных систем, удовлетворяющих своими характеристиками потребности лазерной технологии, в том числе биотехнологии. В силу того, что сложность устройства биологических систем, существенное разнообразие в характере их взаимодействия со светом определяют необходимость использования многих видов лазерных установок в фотобиологии, а также стимулируют разработку новых лазерных средств, в том числе и средства доставки лазерного излучения к объекту исследования или воздействия.

Как и обычный свет, лазерное излучение, отражается, поглощается, переизлучается и рассеивается биологической средой. Все из перечисленных процессов несут информацию о микро и макроструктуре объекта, движении и форме отдельных его частей.

Монохроматичность представляет собой высокую спектральную плотность мощности лазерного излучения, или существенную временную когерентность излучения, обеспечивает: проведение спектрального анализа с разрешением, на несколько порядков превышающим разрешение традиционных спектрометров; высокую степень селективности возбуждения определённого сорта молекул в их смеси, что существенно для биотехнологий; реализацию интерферометрических и голографических способов диагностирования биообъектов.

В силу того, что лазерные лучи практически параллельны, то с увеличением расстояния световой пучок незначительно увеличивается в диаметре. Перечисленные свойства лазерного луча позволяет избирательно воздействовать на разные участки биологической ткани, создавая в малом пятне большую плотность энергии или мощности.

Лазерные установки делятся на следующие группы:

1) Лазеры с высокой мощностью на неодиме, оксиде углерода, углекислом газе, аргоне, рубине, парах металлов и др.;

2) Лазеры, с низкоэнергетическим излучением (гелий-кадмиевые, гелий-неоновые, на азоте, на красителях и др.), которые не оказывают ярко выраженного теплового воздействия на ткани организма.

В настоящее время существуют лазерные системы, генерирующие излучение в ультрафиолетовой, видимой и инфракрасной областях спектра. Биологические эффекты, вызванные лазерным излучением зависят от длины волны и дозы светового излучения.

В офтальмологии зачастую используют: эксимерный лазер (с длиной волны 193 нм); аргоновый (488 нм и 514 нм); криптоновый (568 нм и 647 нм); гелий-неоновый лазер (630 нм); диодный (810 нм); ND:YAG-лазер с удвоением частоты (532 нм), а также генерирующий на длине волны 1,06 мкм; 10-углекислотный лазер (10,6 мкм). Область применения лазерного излучения в офтальмологии определяет длина волны .

Свои названия лазерные установки получают в соответствии с активной средой, и более развернутая классификация содержит твердотельные, газовые, полупроводниковые, жидкостные лазеры и другие. Перечень твердотельных лазеров включает в себя: неодимовый, рубиновый, александритовый, эрбиевый, гольмиевый; к газовым относятся: аргоновый, эксимерный, на парах меди; к жидкостным: лазеры, которые работают на растворах красителей и другие.

Революцию совершили появившиеся полупроводниковые лазеры по причине их экономичности за счет высокого КПД (до 60 - 80% в отличие от 10-30% при традиционных), малогабаритности и надежности. В то же время продолжают широко использоваться и другие виды лазеров.

Одним из важнейших свойств, для использования лазеров, является их особенность позволяющая формировать спекл-картину при отражении когерентного излучения от поверхности объекта. Свет, рассеянный поверхностью, состоит из хаотически расположенных светлых и тёмных пятен - спеклов. Спекл-картина формируется на основе сложной интерференции вторичных волн от незначительных рассеивающих центров, которые расположены на поверхности исследуемого объекта. Ввиду того, что исследуемые биологические объекты в подавляющем количестве имеют шероховатую поверхность и оптическую неоднородность, они всегда формируют спекл-картину и тем самым вносят искажения в конечные результаты исследования. В свою очередь, спекл-поле содержит информацию о свойствах исследуемой поверхности и приповерхностного слоя, что может быть использовано в диагностических целях.

В офтальмохирургии лазеры применяются в следующих направлениях:

В хирургии катаракты: для разрушения катарактального скопления на хрусталике и дисцизии задней капсулы хрусталика при ее помутнении в послеоперационном периоде;

В хирургии глаукомы: при выполнении лазерной гониопунктуры, трабекулопластики, эксимерлазерного удаления глубоких слоев склерального лоскута, при проведении процедуры непроникающей глубокой склерэктомии;

В офтальмоонкохирургии: для удаления некоторых видов опухолей, расположенных внутри глаза.

Важнейшими свойствами, присущими лазерному излучению являются: монохроматичность, когерентность, направленность, поляризация.

Когерентность (от латинского cohaerens находящийся в связи, связанный) - согласованное протекание во времени нескольких колебательных волновых процессов одной частоты и поляризации; свойство двух или более колебательных волновых процессов, определяющее их способность при сложении взаимно усиливать или ослаблять друг друга. Когерентными колебания будут называться, если разность их фаз остается постоянной на протяжении временного отрезка и при суммировании колебаний получается колебание той же частоты. Простейший пример двух когерентных колебаний --два синусоидальных колебания одинаковой частоты .

Когерентность волны подразумевает, что в различных точках волны осцилляции происходят синхронно, другими словами разность фаз между двумя точками не связана со временем. Отсутствие когерентности означает, что разность фаз между двумя точками не постоянна, следовательно меняется с течением временем. Данная ситуация возникает, в том случае, если волна будет сгенерирована не единым источником излучения, а группой одинаковых, но независимых друг от друга излучателей.

Зачастую простые источники излучают некогерентные колебания, в свою очередь лазеры - когерентное. В силу данного свойства лазерное излучение максимально фокусируется, оно имеет способность к интерференции, менее подвержено расходимости, иимеет возможность получения большей плотности энергии пятна.

Монохроматичность (греч. monos - один, единственный + chroma - цвет, краска) - излучение одной определенной частоты или длины волны. Излучение условно можно принимать за монохроматическое, если оно относится к диапазону спектра 3-5 нм. Если в системе существует только один разрешённый электронный переход из возбуждённого в основное состояние, то создается монохроматическое излучение.

Поляризация - симметричность в распределении направления вектора напряженности электрического и магнитного полей в электромагнитной волне касаемо направления ее распространения. Волна будет называться поляризованной, в том случае, если две взаимно перпендикулярные составляющие вектора напряженности электрического поля совершают колебания с постоянной во времени разностью фаз. Неполяризованной - если изменения происходят хаотично. В продольной волне возникновени поляризации не возможно, так как возмущения в данном типе волн всегда совпадают с направлением распространения. Лазерное излучение является высокополяризованным светом (от 75 до 100 %).

Направленность (одно из наиболее важных свойств лазерного излучения) - способность излучения выходить из лазера в виде светового луча с очень низкой расходимостью. Данная черта является простейшим следствием из того, что активная среда размещена в резонаторе (например плоскопараллельный резонатор). В таком резонаторе поддерживаются только электромагнитные волны, распространяющиеся вдоль оси резонатора или в непосредственной близости к ней.

Главными характеристиками лазерного излучения: длина волны, частота, энергетические параметры. Данные характеристики являются биотропными, то есть определяют действие излучения на биообъекты.

Длина волны (л ) представляет собой наименьшее расстояние между двумя соседними колеблющимися точками одной волны. Зачастую в медицине длину волны указывают в микрометрах (мкм) или нанометрах (нм). В зависимости от длины волны изменяется коэффициент отражения, глубина проникновения в ткани организма, поглощение и биологическое действие лазерного излучения.

Частота характеризует число колебаний, совершаемых за единицу времени, и является величиной обратной длине волны. Как правило, выражается в герцах (Гц). С возрастанием частоты увеличивается энергия кванта света. Различают: собственную частоту излучения (для отдельно взятого генератора лазерных колебаний неизменна); частоту модуляции (в медицинских лазерных установках может изменяться от 1 до 1000 Гц). Также высокую важность несут энергетические параметры лазерного облучения.

Принято выделять три основные физические характеристики дозирования: мощность излучения, энергия (доза) и плотность дозы.

Мощность излучения (потокизлучения, поток лучистой энергии, Р ) -представляет собой полную энергию, которая переносится светом в единицу времени сквозь данную поверхность; средняя мощность электромагнитного излучения, которая переносится через какую-либо поверхность. Как правило, измеряется в Вт или кратных величинах.

Энергетическая экспозиция (доза излучения, H ) - это энергетическая облученность лазером за определенный промежуток времени; мощность электромагнитной волны, которая излучается за единицу времени. Измеряется в [Дж] или [Вт * с]. Способность совершать работу является физическим смыслом энергии. Это характерно в том случае, когда работа вносит изменения в ткани фотонами. Биологический эффект светового облучения характеризует энергия. При этом возникает тот же биологический эффект (например загар), как и в случае с солнечным светом, можно достигнуть при невысокой мощности и длительности экспозиции или высокой мощности и небольшой экспозиции. Полученные эффекты будут идентичны, при одинаковой дозе .

Плотность дозы «D» - энергия, полученная на единицу площади воздействия. Единица измерения в СИ - [Дж/м 2 ]. Также используется представление в единицах Дж/см 2 , в силу того, что площади, на которые происходит воздействие, обычно исчисляются квадратными сантиметрами.

gastroguru © 2017