Радиоактивные изотопы, образующиеся при делении(Дайджест). Радиотоксикология цезия Цезий 137 период распада

Радионуклиды – это группы атомов, обладающих свойством радиоактивности, с определенным массовым числом, атомным номером и энергетическим статусом ядра.

Радионуклиды нашли широкое применение во всех сферах техники, науки и других отраслях народного хозяйства. В практике медицины радионуклиды стали использоваться для диагностики болезней, стерилизации лекарств, инструментария и других изделий. Разработан ряд прогностических и лечебных радиопрепаратов.

О пользе и применении радионуклидов в медицине подробно рассказывается в данном видео:

Радионуклиды представляют собой радиоактивные изотопы химических элементов с разными массовыми числами. Попробуем коротко и без углубления в научные данные разобраться в вопросе вреда этих веществ для здоровья человека.

О классификациях радионуклидов

Радиоактивные изотопы по свойствам относятся к разным категориям. Затронем только самые важные из них.

Радиоизотопы делятся на:

  • природные;
  • искусственные, образующиеся в результате проводимых ядерных реакций за счет деятельности человека.

Вторые получают из всех элементов таблицы Менделеева. Общее количество их достигает 2000 и продолжает увеличиваться. Естественных элементов намного меньше, около 100.

По устойчивости ядер радионуклиды классифицируются на:

  • короткоживущие – с периодом полураспада менее 10 суток;
  • долгоживущие – с большим периодом полураспада.

В последние годы в народном хозяйстве все чаще стали применяться радиоизотопы с периодом полного распада в несколько минут, что делает их практически безвредными.

По радиационной токсичности радионуклиды делятся на 4 категории:

  • А – самые высокотоксичные для человека. Это изотопы тяжелых элементов, ядра которых подвержены самопроизвольному распаду. У них относительно большие периоды полураспада. Также эти радиоактивные вещества имеют склонность к накоплению в разных органах тела;
  • Б – радионуклиды высокой токсичности;
  • В – радиоизотопы средней токсичности;
  • Г – радиационные изотопы малой токсичности.

Радиоактивные реакции делятся на альфа-распад – спонтанное изменение структуры ядра с возникновением альфа-частиц и бэтта-распад с испусканием или поглощением электронов, позитронов, нейтрино или антинейтрино.

На более детальных характеристиках видов распада останавливаться не будем. Постараемся больше коснуться свойств радиоэлементов.

Природные радионуклиды находятся в горных породах, почвенных слоях, водных естественных и искусственных резервуарах. Совокупно с космическим излучением они составляют .

Изотопы урана, тория поступают в организм с приемом пищи, воды, вдыхаемым воздухом и служат источниками внутреннего облучения.

О естественном радиационном фоне подробно рассказывается в данном видео-ролике:

Техногенный радиационный фон формируется за счет радионуклидов, содержащихся в стройматериалах, при сжигании топлива и выбросах электростанций.

Ядерные реакторы и ускорители заряженных частиц дают искусственный радиационный фон.

Обратите внимание: Одним из важных свойств радионуклидов является период полураспада . Процессы, протекающие в радионуклидах, приводят к уменьшению числа ядер в два раза, тем самым уменьшая радиационную активность изотопа.

В ткани и органы радионуклиды поступают через вдыхание воздуха, прием пищи, царапины, раны, ожоги.

Где в организме человека находятся радионуклиды

Радиоактивные изотопы имеют свои «излюбленные» места в теле человека.

Всего по этому свойству выделяются 4 группы:

  1. Равномерно распределенные по тканям организма радионуклиды – цезий 134, цезий 137 (радиоцезий), натрий 24 и др.
  2. Оседающие в костной ткани – стронций 89, 90, барий 140, радий 226, 224, кальций 40, иттрий.
  3. Накапливающиеся в ретикуло-эндотелиальных органах (красном костном мозге, лимфоузлах, печени, селезенке) – церий, прометий, америций, плутоний, лантан.
  4. Органотропные – изотопы йода в щитовидной железе, железа в эритроцитах, цинка в поджелудочной железе, молибдена – в радужной оболочке глаза.

Как выделяются радионуклиды

Основная масса радиоактивных изотопов выводится из организма кишечником. Растворимые (цезий и тритий) выходят через мочевыделительную систему. Газообразные элементы удаляются кожей и органами дыхания. Основная часть радионуклидов выводится за несколько суток после поступления. Задерживаются изотопы, имеющие большую атомную массу, радиоактивные коллоиды (полоний, радий, уран). Эти элементы попадают в печень и в желчевыводящие протоки.

Обратите внимание : единицей измерения процесса выведения радионуклидов из организма является период полувыведения , характеризующийся выходом половины поступившего в организм человека радиоактивного вещества.

К примеру: радиоизотоп йода, находящийся в щитовидной железе, имеет период полувыведения 138 суток, а в почках – 7 суток, в костной ткани – 14 суток.

Радиоактивные элементы выводятся медленно из костной ткани. В мягких тканях процесс выхода – значительно быстрее. Речь идет о цезие, молибдене, йоде и др. А вот такие вещества как стронций, цирконий, плутоний и др. выделяются значительно проблематичнее, оседая в костях человека на длительное время.

О вредном воздействии радионуклидов на человека

Радиоактивные изотопы в организме человека оказывают действие, которое приводит к остановке роста и деления клеток, повреждает нормальные биохимические циклы, вызывает нарушение структурных связей ДНК, разрушает генетический код. В итоге клетки подвергаются деструкции.

Свободные радикалы, в больших дозах попадающие в организм, вызывают серьезные тканевые повреждения. В малых дозах они способны нарушить процесс созревания и развития клеток, вызывают злокачественные новообразования. Генетические изменения могут привести к серьезным наследственным болезням, которые проявятся у потомков.

Рассмотрим механизм разрушительного влияния некоторых радионуклидов.

Действие на организм человека стронция-90 и цезия-137

Стронций-90 при попадании накапливается в костной ткани, костном мозге, органах кроветворения. Повреждающее действие вызывает малокровие (анемию). Действие его продолжается десятилетиями, так как период полураспада элемента составляет 29 лет, а полувыведения – 30 лет. При попадании внутрь стронций в течение 15 минут концентрируется в крови, полностью оседая в органах-мишенях через 5 часов. Выведение этого радиоактивного вещества составляет сложную задачу. Пока нет эффективных методов, противостоять его воздействию.

Цезий-137 – второй по распространенности и опасности для человека радионуклид. Он имеет свойство накапливаться в клетках растений и уже в составе пищевых продуктов через желудок и кишечник проникать в организм человека. Период полураспада 30 лет. Излюбленная локализация – мышцы. Выводится очень медленно.

В каких продуктах содержатся радионуклиды

Наибольшее количество радионуклидов находится в хлебобулочных продуктах. После них следуют молоко и молочные изделия, затем овощи, фрукты. Меньше всего радиоизотопов в мясе и рыбе, особенно их мало в морепродуктах. То есть, продукты животного происхождения более чистые в плане радиационной безопасности, чем растительные.

Морская вода содержит меньше радиоактивных элементов по сравнению с пресной. Практически свободны от изотопов артезианские воды. Остальные водоемы могут содержать высокие дозы, в зависимости от своего географического нахождения и других факторов (загрязнение).

Допустимые нормы содержания радионуклидов цезия-137 и стронция-90 приведены в таблице:

О радиозащитных свойствах пищевых и лекарственных веществ

Радиоустойчивость организма человека повышают полисахариды, липополисахариды листьев чая, винограда, медицинский спирт, витамины, минералы, практически все группы ферментов, многие гормоны.

Из лекарственных средств сопротивляемость к действию источников радиации проявляют антибиотики, наркотические вещества, витамины искусственного производства.

Продукты, обладающие свойством выведения радионуклидов

Рассмотрим основные группы пищевых продуктов, которые способны оказывать антирадиационное действие и ускоряют выход изотопов из тканей человека.

К таким продуктам относятся:

  • яичная скорлупа – входящий в ее состав кальций выводит радиоактивный стронций. Употребляют ее до 5 г в сутки. Предварительно измельченная до состояния порошка скорлупа добавляется в еду;
  • хлебные изделия из ржаной муки. В них находится фитин, связывающий стронций, который попадает в ЖКТ с продуктами;
  • цитрусовые, черноплодная рябина, ягоды боярышника, облепиха, солодка. В этих растениях и их плодах содержатся флавониды, которые также обладают свойствами выведения радионуклидов.

Хотите узнать, какие продукты способствуют выведению радионуклидов из организма? Смотрите видео-обзор:

Как лучше обрабатывать пищевые продукты для очистки от радиоактивности

Обычные механические способы обработки пищевых продуктов способствуют удалению находящихся на их поверхности стронция и цезия. Достаточно просто помыть их в холодной воде и очистить от загрязнений.

У овощных культур необходимо срезать верхнюю часть плода, так как именно в ней скапливается около 80% ядовитых и радиоактивных веществ. Капусту надо чистить от верхних листьев, а также не использовать внутреннюю «кочерыжку».

Термическая обработка выводит около половины содержащихся в продукте радионуклидов. А вот жарка как раз наоборот, задерживает их.

Мясные и рыбные полуфабрикаты перед приготовлением следует замочить в воде с добавлением уксуса. Мясной бульон рекомендуется сливать, в нем после варки скапливаются токсины и радиоактивные изотопы. При необходимости приготовления бульона нужно залить мясо холодной водой, варить 10 минут, затем бульон слить. Воду набрать свежую, и отваривать мясо до готовности. В полученном бульоне вредных радиоактивных веществ будет меньше в два раза.

Количество радиоактивных элементов уменьшается при мелкой нарезке мяса и вымачивании его в воде в течение нескольких часов. Следует помнить, что при такой обработке теряются и полезные свойства продукта.

Предварительное замачивание грибов удаляет на 30% цезий, а варка до 90%. Стронций при таких видах обработки практически не выводится.

Самыми «чистыми» от радиоактивности являются рафинированные сорта растительного масла, сахар и крахмал.

Обработка молока до состояния масла практически полностью лишает его стронция, а цезий обезвреживается при переработке молока в сыр, порошкообразные субстанции.

Топинамбур – плод, который не накапливает радиоактивность.

Уха может впитывать радионуклиды из костей, плавников и чешуи рыбы. По этой же причине радиационную опасность могут представлять и консервы, в которых полуфабрикат обрабатывается под давлением с применением высоких температур. Это приводит к размягчению несъедобных частей рыбы, в которых обычно и сконцентрированы радионуклиды.

Продукты отрубей из зерна также аккумулируют радиоизотопы стронция.

Что делать при поражении радионуклидами

Радиоактивные изотопы, попавшие в организм, требуют ускорения процесса их выведения. Самым главным фактором сопротивляемости вредоносному воздействию радионуклидов является состояние иммунной системы. Имеющийся естественный радиационный фон, воздействуя на человека тысячелетиями, создал естественные механизмы защиты, обладающие обезвреживающим радионуклиды эффектом. Речь идет о выведении чужеродных субстанций желчью, кишечником, почками, печенью.

Если процесс поступления в организм радиационной группы веществ носит постоянный характер, то необходимо:

  • принимать препараты кальция с поливитаминами, способствующими защите костной ткани;
  • употреблять в пищу продукты с высоким содержанием калия – горох, фасоль, чечевицу, сухофрукты. Находящиеся в них вещества способствуют выведению из организма цезия;
  • добавлять в рацион куриные яйца, молоко. Находящийся в них кальций способен удалять стронций;
  • есть фрукты и овощи с высоким содержанием пектинов, связывающих радионуклиды
  • принимать мочегонные препараты;
  • поддерживать активный водный режим. Пить минеральную воду, которая будет способствовать избавлению от радиоактивных изотопов калия, натрия и магния.

Интересные факты последствий радиоактивных заражений

Аварии на атомных станциях, испытание ядерного оружия, эксперименты ядерных лабораторий оставляют свой след в атмосфере, воде, почве. Учеными выяснено, что таким образом во внешнюю среду выделяется около 20 радионуклидов. Основная часть из них долговременного вреда не представляет, так как инактивируется в течение нескольких недель и месяцев. Прежде всего речь идет об изотопах благородных газов, составляющих основу радиоактивного облака. Они способны принести человеку вред для здоровья.

Следующим опасным элементом был признан изотоп йода-131. Он быстро скапливался в продуктах, особенно в молоке. Следует отметить, что нормы радиационной безопасности в нашей стране намного жестче, чем в Европе.

Элементом, который не так агрессивен в плане своего вредоносного значения, чем вышеперечисленные вещества, но более стабилен, является плутоний. Особую опасность он представляет своей возможностью вызывать серьезные заболевания легких.

И всё же больший вред несут в себе уже разобранные нами цезий и стронций, сохраняющиеся в организме десятилетиями.

Обратите внимание: На фоне происходящих трагедий (авария на Чернобыльской АЭС, взрыв на атомной станции «Фукусима-1, других техногенных катастроф») появилась целая плеяда шарлатанов, запугивающих людей рассказами о том, что якобы радиоактивностью заражены огромные территории и поражено все население. Они предлагают за деньги стопроцентную очистку организма от радиоактивных веществ. Есть ли в этих утверждениях рациональное зерно – тема для отдельного серьезного разговора. В большинстве случаев в основе «чудодейственных» методов лежит обман. Поэтому, любой человек, подвергшийся радиационному заражению, должен обращаться за помощью только к официальной медицине .

Лотин Александр Владимирович, врач-рентгенолог

Цезий-137 радионуклид с периодом полураспада (Т1/2) – 30,17 лет. Ядро претерпевает?-электронный распад с величиной энергии?-излучения – 0,195 МэВ. Метастабильное ядро дочернего радионуклида бария-137 (Т1/2 = 2,5 мин.) испускает?-излучение с энергией 0,661 Мэв и превращается в стабильный химический элемент. Цезий-137 по радиотоксичности относится к группе В (средняя токсичность) и характеризуется высокой подвижностью в экологических цепях биосферы. Суммарный выброс его в окружающую среду в результате аварии на ЧАЭС составил 8,7 1010 МБк.

В организм животных цезий-137 поступает в основном с кормом. Путь поступления с воздухом в легкие менее значим. Радионуклид, попав внутрь, хорошо всасывается независимо от пути поступления. Резорбция цезия-137 в желудочно-кишечном тракте у моногастричных животных достигает 100%, у животных имеющих преджелудки до 80%. Цезий-137 в биологическом отношении аналог калию. Независимо от вида животных он распределяется сравнительно равномерно по органам и тканям.

В условиях хронического поступления цезия-137, он депонируется в организме до определенной величины, на что влияет масса животного. В отдаленные сроки, после воздействия радионуклида в небольших дозах (7,77-12,58) 104 Бк/г, у крыс длительно сохраняется лейкопения, образуются опухоли кроветворной ткани, кишечника, поджелудочной железы, молочных желез, легких, почек.

Выводится радионуклид из организма с калом и мочой. У лактирующих животных цезий-137 выделяется с молоком. Выделение его с молоком коров достигает 1,2%, с молоком овец – 15,0%, и с молоком коз – 20% суточного поступления радионуклида с кормом. Из корма птиц до 3,3% цезия-137 переходит в яйцо.

Эффективный период полувыведения радионуклида у лактирующих коров составляет от 20 до 50 дней.

Перед забоем крупного рогатого скота, получавшего корма, содержащие цезий-137, проводится радиометрический контроль, что гарантирует производство говядины соответствующей требованиям РДУ-99 (не более 500 Бк/кг).

Прижизненная оценка концентрации цезия-137 в мышечной ткани животных осуществляется прибором СПР-68-01. Детектор дозиметра должен иметь свинцовую защиту (коллиматор) с толщиной стенки 10-12 мм. Подготовка прибора к работе проводится согласно техническому описанию. Затем измеряется величина мощности экспозиционной дозы?-фона на территории, где находятся животные. После чего, детектор прибора устанавливается на чистую поверхность кожи ягодичных мышц и удерживается не менее 20 секунд для снятия показаний.

Расчет удельной активности цезия-137 в мышечной ткани проводится по формуле:

А= К (Рж – 0,6 Рф), где

А – удельная активность (Бк/кг);

К – коэффициент пересчета мощности экспозиционной дозы в удельную активность, равный – 222;

Рф – мощность экспозиционной дозы?-фона (мкР/час);

Рж – мощность экспозиционной дозы от животного (мкР/час).

Для снижения всасывания цезия -137 в желудочно-кишечном тракте животных и выведения его с фекалиями необходимо применять радиопротекторы. Сорбирующими свойствами обладают следующие химические соединения: железо-гексацианоферрат аммония (cоль Гизе); железо-гексацианоферрат калия (соль Нигровича); железо-гексацианоферрат (ферроцин). Применение этих соединений крупному рогатому скоту в виде солевых лизунцов (10%) в свободном доступе; в составе болюсов (15%) по 2-3 на одно животное с повторным введением через 2-3 месяца; в виде комбикорма (0.6%) для всех видов животных в дозе 3 г/гол., позволяет снизить переход цезия-137 в продукцию от 2 до 10 раз. Данные препараты не влияют на качество продуктов питания.

Директор реакторной установки БН-350 Геннадий Пугачев рассказал журналисту «Лады», для чего используется и чем опасен цезий-137.

Геннадий Пугачев отметил, что цезий-137 получают в результате деления ядер урана. Он дает мягкое гамма-излучение. Используется в ряде радиоизотопных приборов. В частности, для контроля уровня и плотности жидкости. Есть измерительные приборы, в которых используется цезий-137. Цезий является опасным веществом.

Это очень устойчивый элемент, период полураспада которого составляет 30 лет. За этот продолжительный период его активность падает всего лишь в два раза, - говорит Геннадий Пугачев.

Обычно цезий-137 помещают в капсулу, а затем в защитный контейнер. Капсула заварена и сделана из нержавеющей стали. Как уточняет Геннадий Пугачев, в капсулу цезий-137 помещают в виде какого-нибудь соединения. Потому, что он является щелочным металлом и легко вступает в соединения.

Вступать в соединение цезий-137 может с солью, окисью. Не знаю, какое конкретно в данном случае соединение. Как правило, он содержится в виде порошка. Опасен цезий-137 тем, что он является радиоизотопом и испускает гамма-кванты. Это опасно, конечно. При вскрытии контейнера вы можете получить переоблучение, находясь на небольшом расстоянии. Есть три способа защиты от излучения: это время (поменьше находиться рядом), расстояние - подальше, и защита - в данном случае это сам контейнер. Очень опасно, если сама ампула с цезием будет вскрыта, - объясняет Геннадий Пугачев.

Кроме того, цезий-137 опасен тем, что может легко попасть в организм человека в виде порошка, таким образом вызвав внутреннее облучение, предупреждает директор БН-350.

Внутреннее облучение гораздо страшнее, чем внешнее. При внутреннем попадании нет ни расстояния, ни защиты. Если у нас кожа, одежда и прочее служит определенной защитой, когда цезий попадает внутрь, это может привести к тяжелым последствиям. Как мы знаем из основ радиологии, это снижение иммунитета, раковая болезнь и прочее. Что касается потерянного контейнера, ничего конкретного по нему я пока сказать не могу. Данных по нему у меня нет, - отметил Геннадий Пугачев.

Ранее сообщалось, что контейнер с цезием-137 выпал из автомашины «КамАЗ» , следовавшей из города Уральск в Мангистаускую область.
Военные начали поиски контейнера с цезием-137 возле поселка Бейнеу.

Цезий-137 - радиоактивное вещество, применяемое в промышленности и в медицине. В частности, цезий-137 используют в нефтедобыче для радиоактивного каротажа .

По поручению акима области Мангистауской области Алика Айдарбаева создан областной оперативный штаб по организации поисковых работ. Возглавил штаб заместитель акима области Ануар Чужегулов, в состав также входят руководители областных ДВД, департаментов по ЧС, по защите прав потребителей, КНБ, экологии, специалисты ТОО «МАЭК-Казатомпром».

Цезий (лат. caesium – Cs, химический элемент I группы Периодической системы Менделеева, атомный номер 55, атомная масса 132,9054. Назван от латинскогоcaesius – голубой (открыт по ярко-синим спектральным линиям). Серебристо-белый металл из группы щелочных; легкоплавкий, мягкий, как воск; плотность 1,904 г/см 3 и имеет уд. вес 1,88 (при 15ºС), Т пл - 28,4ºС. На воздухе воспламеняется, с водой реагирует со взрывом. Основной минерал – поллуцит.

Известно 34 изотопа цезия с массовыми числами 114-148, из них только один (133 Cs) стабильный, остальные – радиоактивны. Изотопная распространенность цезия-133 в природе составляет приблизительно 100%. 133 Cs относится к рассеянным элементам. В незначительных количествах он содержится практически во всех объектах внешней среды. Кларковое (среднее) содержание нуклида в земной коре - 3,7∙10 -4 %, в почве – 5∙10 -5 %. Цезий – постоянный микроэлемент растительных и животных организмов: в живой фитомассе содержится в количестве 6∙10 -6 %, в организме человека – примерно 4 г. При равномерном распределении цезия-137 в организме человека с удельной активностью 1 Бк/кг мощность поглащенной дозы, по данным различных авторов, варьирует от 2,14 до 3,16 мкГр/год .

В природе этот серебристо-белый щелочной металл встречается в виде стабильного изотопа Cs-133. Это редкий элемент со средним содержанием в земной коре 3,7∙10 -4 %. Обычный, природный цезий и его соединения не радиоактивны . Радиоактивен только искусственно получаемый изотоп 137 Cs. Долгоживущий радиоактивный изотоп цезия 137 Cs образуется при делении ядер 235 U и 239 Pu с выходом около 7%. При радиоактивном распаде 137 Cs испускает электроны с максимальной энергией 1173 кэВ и превращается в короткоживущий γ-излучающий нуклид 137m Ba (табл. 18). Обладает наивысшей среди щелочных металлов химической активностью, хранить его можно только в запаянных вакуумированных ампулах.

Таблица 18
Основные характеристики цезия-137

Металлический цезий применяют в фотоэлементах и фотоумножителях при изготовлении фотокатодов и как геттер в люминесцентных трубках. Пары цезия – рабочее тело в МГД-генераторах, газовых лазерах. Соединения цезия используют в оптике и приборах ночного видения.



В продуктах ядерной реакции деления имеются значительные количества разложенных радионуклидов цезия, среди которых наиболее опасен 137 Cs . Источником загрязнения могут быть и радиохимические заводы. Выброс цезия–137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики. К началу 1981 г. суммарная активность поступившего в окружающую среду 137 Cs достигла 960 ПБк. Плотность загрязнения в Северном и Южном полушариях и в среднем на земном шаре составляла соответственно 3.42; 0.86 и 3.14 кБк/м 2 , а на территории бывшего СССР в среднем – 3,4 кБк/м 2 .

При аварии на Южном Урале в 1957 г. произошёл тепловой взрыв хранилища радиоактивных отходов, и в атмосферу поступили радионуклиды с суммарной активностью 74 ПБк, в том числе 0,2 ПБк 137 Cs. При пожаре на РХЗ в Уиндскейле в Великобритании в 1957 г. произошёл выброс 12 ПБк радионуклидов, из них 46 ТБк 137 Cs. Технологический сброс радиоактивных отходов предприятия «Маяк» на Южном Урале в р. Течу в 1950 г. составил 102 ПБк, в том числе 137 Cs 12,4 ПБк. Ветровой вынос радионуклидов из поймы оз. Карачай на Южном Урале в 1967 г. составил 30 ТБк. На долю 137 Cs пришлось 0,4 ТБк.

Настоящей катастрофой стала в 1986 г. авария на Чернобыльской атомной электростанции (ЧАЭС): из разрушенного реактора было выброшено 1850 ПБк радионуклидов, при этом на долю радиоактивного цезия пришлось 270 ПБк. Распространение радионуклидов приняло планетарные масштабы. На Украине, в Белоруссии и Центральном районе Российской Федерации выпало более половины от общего количества радионуклидов, осевших на территории СНГ. Известны случаи загрязнения внешней среды в результате небрежного хранения источников радиоактивного цезия для медицинских и технологических целей.



Цезий-137 используется в гамма-дефектоскопии, измерительной технике, для радиационной стерилизации пищевых продуктов, медицинских препаратов и лекарств, в радиотерапии для лечения злокачественных опухолей. Также цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида цезия (плотность 3,9 г/см 3 , энерговыделение около 1,27 Вт/ см 3 ).

Цезий-137 используется в датчиках предельных уровней сыпучих веществ в непрозрачных бункерах. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое гамма-излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 137 Cs с более коротким периодом полураспада и более жестким гамма-излучением .

Широкое распространение получил в качестве источника γ-излучения. В медицине цезиевые источники, наряду с радиевыми, применяются в терапевтических γ-аппаратах и устройствах для внутритканевой и полостной гамма-терапии. С 1967 г. явление перехода между двумя сверхтонкими уровнями основного состояния атома цезия-137 используется для определения одной из основных единиц измерения времени – секунды.

Радиоцезий 137 Cs исключительно техногенный радионуклид, его наличие в изучаемой среде связано с испытаниями ядерного оружия или с использованием ядерных технологий. 137 Cs – β-γ-излучающий радиоизотоп цезия, один из главных компонентов техногенного радиоактивного загрязнения биосферы. Образуется в результате ядерных реакций деления. Содержится в радиоактивных выпадениях, сбросах, отходах радиохимических заводов. ОА 137 Cs в питьевой воде ограничивается уровнями 11Бк/дм 3 или 8 Бк/дм 3 .

Геохимической особенностью 137 Cs является его способность очень прочно задерживаться природными сорбентами. Вследствие этого при поступлении в ОПС его активность быстро уменьшается по мере удаления от источника загрязнения. Природные воды сравнительно быстро самоочищаются за счет поглощения 137 Cs взвесями и донными осадками .

Цезий может в значительных количествах накапливаться в сельскохозяйственных растениях, и, в частности, в семенах. Наиболее интенсивно поступает из водной среды и с высокой скоростью передвигается по растению. Внесение в почву калийных удобрений и известкование значительно снижают поглощение цезия растениями, и тем сильнее, чем выше доля калия .

Коэффициент накопления особенно высок у пресноводных водорослей и арктических наземных растений (особенно, лишайников), из животного мира – у северных оленей через ягель, которым они питаются. Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Этот нуклид поступает в основном с пищей в количестве 10 мкг/сут. Выводится из организма преимущественно с мочой (в среднем 9 мкг/сут). Цезий – постоянный химический микрокомпонент организма растений и животных. Главный накопитель цезия в организме млекопитающих – мышцы, сердце, печень. Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям.

Цезий-137 выводится в основном через почки и кишечник. Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите). В процессе выведения значительные количества цезия повторно всасываются в кровь в нижних отделах кишечника. Эффективным средством для уменьшения всасывания цезия в кишечнике является сорбент ферроцианид, который связывает нуклид в неусваиваемую форму. Кроме того, для ускорения выведения нуклида стимулируют естественные выделительные процессы, используют различные комплексообразователи.

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Дозам в 148, 170 и 740 МБк соответствуют лёгкая, средняя и тяжёлая степени поражения, однако лучевая реакция отмечается уже при единицах МБк.

137 Cs принадлежит к группе радиоактивных веществ, равномерно распределяющихся по органам и тканям, по этой причине относится к среднеопасным по радиотоксичности нуклидам. Он обладает хорошей способностью проникать в организм вместе с калием посредством пищевых цепочек.

Основной источник поступления цезия в организм человека – загрязнённые нуклидом продукты питания животного происхождения. Содержание радиоактивного цезия в литре коровьего молока достигает 0,8-1,1 % от суточного поступления нуклида, козьего и овечьего – 10-20 %. Однако в основном он накапливается в мышечной ткани животных: в 1 кг мяса коров, овец, свиней и кур содержится 4,8, 20 и 26 % (соответственно) от суточного поступления цезия. В белок куриных яиц попадает меньше – 1,8-2,1 %. Ещё в больших количествах цезий накапливается в мышечных тканях гидробионтов: активность 1 кг пресноводных рыб может превышать активность 1 л воды более чем в 1000 раз (у морских – ниже) .

Основной источник цезия для населения России – молочные и зерновые продукты (после аварии на ЧАЭС – молочные и мясные), в странах Европы и США цезий поступает в основном с молочными и мясными продуктами и меньше – с зерновыми и овощными . Создаваемое таким образом постоянное внутреннее облучение наносит существенно больший вред, чем внешнее облучение этим изотопом .

Опубликованные методики измерения активности 137 Cs по его β-излучению предполагают радиохимическую подготовку пробы и выделение цезия с высокой степенью чистоты для исключения мешающего влияния других β-излучателей. Современные методы определения 137 Cs основаны, как правило, на регистрации гамма-излучения с энергией 661,6 кэВ. Они подразделяются на инструментальные, нижний предел определения (НПО) которых составляет 1-10 Бк/кг (или Бк/дм 3), и методы с предварительным химическим обогащением (НПО до 10 -2 Бк/кг). Для концентрирования 137 Cs из разбавленных растворов чаще всего используют его соосаждение с ферроцианидами никеля, меди, цинка, железа, кобальта, кальция, магния или сорбенты-коллекторы на их основе.

12. Плутоний

Плутоний (plutonium ) Pu – искусственный радиоактивный химический элемент III группы Периодической системы элементов Менделеева, атомный номер 94, трансурановый элемент, относится к актиноидам. Первый нуклид 238 Pu открыт в 1940 г. Г.Т.Сиборгом (G.Th.Seaborg), Э.М.Мак-Милланом (E.M. McMillan), Дж.Э.Кеннеди (J.E.Kennedy) и А.Ч.Валом (A.Ch.Wahl). Весной 1941 г. Сиборг с сотрудниками обнаружили и впервые выделили четверть микрограмма 239 Pu после распада 239 Np, образовавшегося при облучении 238 U ядрами тяжелого водорода (дейтонами). Вслед за ураном и нептунием новый элемент получил свое имя в честь открытой в 1930 г. планеты Плутон. С 24 августа 2006 г. по решению Международного астрономического союза Плутон более не является планетой Солнечной системы. В греческой мифологии Плутон (он же Аид) – бог царства мертвых .

Плутоний Pu – опаснейший тяжелый металл. Имеет 15 радиоактивных изотопов с массовыми числами от 232 до 246, в основном α-излучателей. На Земле имеются лишь следы этого элемента и только в урановых рудах. Величины Т½ всех изотопов плутония много меньше возраста Земли, и поэтому весь первичный плутоний (существовавший на нашей планете при её формировании) полностью распался. Однако ничтожные количества 239 Pu постоянно образуются при β-распаде 239 Np, который, в свою очередь, возникает при ядерной реакции урана с нейтронами (например, нейтронами космического излучения).

Поэтому следы плутония обнаружены в урановых рудах в таких микроскопических количествах (0,4-15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи. Около 5000 кг его выделилось в атмосферу в результате ядерных испытаний. По некоторым оценкам, почва в США содержит в среднем 2 миллиКюри (28 мг) плутония на км 2 от выпадения радиоактивных осадков. Это типичный продукт творения человеческих рук; его получают в ядерных реакторах из урана-238, который последовательно превращается в уран-239, нептуний-239 и плутоний-239.

Чётные изотопы плутоний-238, -240, -242 не являются делящимися материалами, но могут делиться под действием нейтронов высокой энергии (являются делимыми). Они не способны поддерживать цепную реакцию (за исключением плутония-240). Получены изотопы 232 Pu – 246 Pu; среди продуктов взрыва термоядерных бомб обнаружены также 247 Pu и 255 Pu. Наиболее устойчив малодоступный 244 Pu (α-распад и спонтанное деление, Т 1/2 = 8,2·10 7 лет, атомная масса 244,0642). В свободном виде хрупкий серебристо-белый металл. Следы изотопов 247 Pu и 255 Pu обнаружены в пыли, собранной после взрывов термоядерных бомб.

На ядерные исследования и создание атомной промышленности в США, как позднее и в СССР, были брошены огромные силы и средства. В короткий срок были изучены ядерные и физико-химические свойства плутония (табл. 19) . Первый ядерный заряд на основе плутония был взорван 16 июля 1945 г. на полигоне Аламогордо (испытание под кодовым названием «Тринити»). В СССР первые опыты по получения 239 Pu были начаты в 1943-1944 гг. под руководством академиков И.В. Курчатова и В.Г. Хлопина. Впервые плутоний в СССР был выделен из облучённого нейтронами урана. В 1945 г. и в 1949 г. в СССР начал работать первый завод по радиохимическому выделению.

Таблица 19
Ядерные свойства важнейших изотопов плутония

Примечание. Все изотопы плутония – слабые гамма-излучатели. Плутоний-241 превращается в америций-241 (мощный гамма-излучатель)

Лишь два изотопа плутония имеют практическое применение в промышленных и военных целях. Плутоний-238, получаемый в ядерных реакторах из нептуния-237, используется для производства компактных термоэлектрических генераторов. Шесть миллионов электрон-вольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 МВт. Максимальная мощность такого же по массе химического источника тока – 5 Вт.

Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа-распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu – исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от неё несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашёл применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности, срок службы которых достигает 5 лет и более.
Плутониево-бериллиевый сплав работает как лабораторный источник нейтронов. Изотоп Pu-238 находится в ряде атомных термоэлектрических генераторов энергии на борту космических исследовательских аппаратов. Благодаря долгому времени жизни и высокой тепловой мощности, этот изотоп используется почти исключительно в РИТЭГ космического назначения, например, на всех аппаратах, улетавших дальше орбиты Марса.

Из всех изотопов наиболее интересным представляется Pu-239, его период полураспада 24110 лет. Как делящийся материал, 239 Pu широко используют в качестве ядерного топлива в атомных реакторах (энергия, освобождающаяся при расщеплении 1 г 239 Pu, эквивалентна теплоте, выделяющейся при сгорании 4000 кг угля), в производстве ядерного оружия (т.н. «оружейный плутоний») и в атомных и термоядерных бомбах, а также для ядерных реакторов на быстрых нейтронах и атомных реакторов гражданского и исследовательского назначения. Как источник α-излучения плутоний, наряду с 210 Po, нашел широкое применение в промышленности, в частности, в устройствах элиминации электростатических зарядов. Этот изотоп находит применение и в составе контрольно-измерительной аппаратуры .

Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью, за исключением марганца. В своей жидкой фазе это самый вязкий металл. Температура плавления -641°C; температура кипения -3232°C; плотность - 19,84 (в альфа-фазе). Это крайне электроотрицательный, химически активный элемент, гораздо в большей степени, чем уран. Он быстро тускнеет, образуя радужную плёнку (подобно радужной масляной плёнки), вначале светло-жёлтую, со временем переходящую в тёмно-пурпурную. Если окисление довольно велико, на его поверхности появляется оливково-зелёный порошок оксида (PuO 2). Плутоний охотно окисляется, и быстро коррозирует даже в присутствии незначительной влажности .

При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности. Плутоний обладает шестью различными фазами (кристаллическими структурами) в твёрдой форме, больше чем любой другой элемент.

Соединения плутония с кислородом, углеродом и фтором используются в ядерной промышленности (непосредственно или в качестве промежуточных материалов). Металлический плутоний не растворяется в азотной кислоте, но диоксид плутония растворяется в горячей концентрированной азотной кислоте. Однако в твердой смеси с диоксидом урана (например, в отработавшем топливе ядерных реакторов) растворимость диоксида плутония в азотной кислоте увеличивается, поскольку диоксид урана растворяется в ней. Эта особенность используется при переработке ядерного топлива (табл. 20).

Таблица 20
Соединения плутония и их применение

Важнейшие соединения плутония: PuF 6 (легкокипящая жидкость; термически значительно менее стабилен, чем UF 6), твердые оксид PuO 2 , карбид PuC и нитрид PuN, которые в смесях с соответствующими соединениями урана могут использоваться как ядерное горючее.

Наибольшее распространение получили такие радиоизотопные устройства, как ионизационные сигнализаторы пожара или радиоизотопные индикаторы дыма. При механической обработке плутоний легко образует аэрозоли.

В природе образуется при β-распаде Np-239, который, в свою очередь, возникает при ядерной реакции урана-238 с нейтронами (например, нейтронами космического излучения). Промышленное производство Pu-239 также основано на этой реакции и происходит в атомных реакторах. Плутоний-239 первым образуется в ядерном реакторе при облучении урана-238, чем длительнее этот процесс, тем больше возникает более тяжелых изотопов плутония. Плутоний-239 должен быть химически отделен от продуктов деления и оставшегося в ОЯТ урана. Этот процесс называется репроцессингом. Поскольку все изотопы имеют одинаковое число протонов и разное – нейтронов, их химические свойства (химические свойства зависят от числа протонов в ядре) тождественны, поэтому очень трудно разделить изотопы с помощью химических методов.

Последующее отделение Pu-239 от урана, нептуния и высокорадиоактивных продуктов деления осуществляют на радиохимических заводах радиохимическими методами (соосаждением, экстракцией, ионными обменами др.) Металлический плутоний обычно получают востановлением PuF 3 , PuF 4 или PuO 2 парами бария, кальция или лития.

Затем используют его способность к расщеплению под действием нейтронов в атомных реакторах, а способность к самоподдерживающейся цепной реакции деления при наличии критической массы (7 кг) – в атомных и термоядерных бомбах, где он является основным компонентом. Критическая масса его α-модификации 5,6 кг (шар диаметром 4,1 см). 238 Pu используется в «атомных» электрических батарейках, обладающих длительным сроком службы. Изотопы плутония служат сырьем для синтеза трансплутониевых элементов (Am и др.).

Облучая Pu-239 нейтронами, можно получать смесь изотопов, из которых изотоп Pu-241, также как и Pu-239, является делящимся и мог бы быть использован для получения энергии. Однако, его период полураспада 14,4 года, что не позволяет его длительно сохранять, к тому же, распадаясь, он образует неделящийся Am-241 (α-, γ-радиоактивный) с периодом полураспада 432,8 года. Получается, что примерно через каждые 14 лет количество Am-241 в окружающей среде удваивается. Обнаружить его, как и другие трансурановые элементы, обычной γ-спектрометрической аппаратурой сложно и требуются весьма специфичные и дорогостоящие методы обнаружения. Изотоп Pu- 242 по ядерным свойствам наиболее похож на уран-238, Am-241, получавшийся при распаде изотопа Pu-241, использовался в детекторах дыма.

Америций-241, также как и другие трансурановые элементы (нептуний, калифорний и другие), является экологически опасным радионуклидом, являясь преимущественно α-излучающим элементом, обуславливающим внутреннее облучение организма.

Накопленного на Земле плутония более чем достаточно . Его производства абсолютно не требуется как для обороны, так и энергетики. Тем не менее, из 13 существовавших в СССР реакторов, производивших оружейный плутоний, продолжают работать 3: два из них в г. Северске. Последний такой реактор в США был остановлен в 1988 г. .

Качество плутония определяется по процентному содержанию в нем изотопов (кроме плутония-239) (табл. 21).

На сентябрь 1998 г. цены на плутоний, установленные изотопным отделением Ок-риджской Национальной лаборатории (ORNL) были таковы: $8,25/мг за плутоний-238 (97% чистоты); $4,65/мг за плутоний-239 (>99,99%); $5,45/мг за плутоний-240 (>95%); $14,70/мг за плутоний-241 (>93%) и $19,75/мг за плутоний-242.

Таблица 21
Качество плутония

Эта классификация плутония по качеству, разработанная Департаментом энергетики США, достаточно произвольна. Например, из топливного и реакторного плутония, менее пригодных для военных целей, чем оружейный, также можно сделать ядерную бомбу. Плутоний любого качества может быть применен для создания радиологического оружия (когда радиоактивные вещества распыляются без осуществления ядерного взрыва).

Всего 60 лет назад зеленые растения и животные не содержали в своем составе плутоний, сейчас до 10 т его распылено в атмосфере. Около 650 т наработано атомной энергетикой и свыше 300 т военным производством. Значительная часть всего производства плутония находится в России .

Попадая в биосферу, плутоний мигрирует по земной поверхности, включаясь в биохимические циклы. Плутоний концентрируется морскими организмами: его коэффициент накопления (т.е. отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона (смешанного) – около 2300, для моллюсков – до 380, для морских звёзд – около 1000, для мышц, костей, печени и желудка рыб – 5,570, 200 и 1060 соответственно. Наземные растения усваивают плутоний главным образом через корневую систему и накапливают его до 0,01% от своей массы. С 70-х гг. 20 века доля плутония в радиоактивном загрязнении биосферы возрастает (облучённость морских беспозвоночных за счёт плутония становится больше, чем за счёт 90 Sr и 137 Cs). ПДК для 239 Pu в открытых водоёмах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3ּ 10 -5 Бк/л .

Поведение плутония в воздушной среде определяет условия для безопасного хранения и обращения с ним в процессе выработки (табл. 22). Окисление плутония создает риск для здоровья людей, так как диоксид плутония, будучи устойчивым соединением, легко попадает в легкие при дыхании. Его удельная активность в 200 тыс. раз выше, чем у урана, к тому же освобождения организма от попавшего в него плутония практически не происходит в течение всей жизни человека.

Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, концентрация его там практически постоянна. Период полувыведения из печени – 40 лет. Хелатные добавки могут ускорить выведение плутония .

Таблица 22
Изменение свойств плутония в воздушной среде

Плутоний называют «ядерным ядом», его допустимое содержание в организме человека оценивается нанограммами. Международная комиссия по радиологической защите (МКРЗ) установила норму ежегодного поглощения на уровне 280 нанограмм. Это значит, что для профессионального облучения концентрация плутония в воздухе не должна превышать 7 пикоКюри/м 3 . Максимально допустимая концентрация Pu-239 (для профессионального персонала) 40 наноКюри (0.56 микрограмма) и 16 наноКюри (0.23 микрограмма) для лёгочной ткани.

Поглощение 500 мг плутония как мелкораздробленного или растворённого материала может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель. Вдыхание 100 мг плутония в виде частиц оптимального для удержания в лёгких размера 1-3 микрона ведёт к смерти от отёка лёгких за 1-10 дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза примерно за месяц. Для доз много меньших этих величин проявляется хронический канцерогенный эффект.
На протяжении всей жизни риск развития рака лёгких для взрослого человека зависит от количества попавшего в тело плутония. Приём внутрь 1 микрограмма плутония представляет риск в 1 % развития рака (нормальная вероятность рака 20 %). Соответственно 10 микрограмм увеличивают риск рака с 20 % до 30 %. Попадание 100 микрограмм или более гарантирует развитие рака лёгких (обычно через несколько десятилетий), хотя свидетельства повреждения лёгких могут появиться в течении нескольких месяцев. Если он проникает в систему кровообращения, то с большой вероятностью начнёт концентрироваться в тканях, содержащих железо: костном мозге, печени, селезёнке. Если 1,4 микрограмма разместятся в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак.

Дело в том, что Pu-239 является α-излучателем, и каждая его α-частица в биологической ткани образует вдоль своего короткого пробега 150 тыс. пар ионов, повреждая клетки, производя различные химические превращения. 239 Pu принадлежит к веществам со смешенным типом распределения, поскольку накапливается не только в костном скелете, но и в печени. Очень хорошо удерживается в костях и практически не удаляется из организма благодаря замедленности обменных процессов в костной ткани. По этой причине данный нуклид принадлежит к разряду наиболее токсичных .

Находясь в организме, плутоний становится постоянным источником α-излучения для человека, вызывая костные опухоли, рак печени и лейкемию, нарушения кроветворения, остеосаркомы, рак лёгких, являясь, таким образом, одним из самых опасных канцерогенов (табл. 23).

Список литературы

1. Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38-­99. – М., ВИНИТИ РАН.
Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38-­99. – М., ВИНИТИ РАН.2. Баженов В.А., Булдаков Л.А., Василенко И.Я. и др. Вредные химические вещества. Радиоактивные вещества: Справочное издание //Под ред. В.А. Филова и др.–Л.: Химия, 1990. – 464 с.
3. Химическая энциклопедия: в 5 т. // Гл. ред. Зефиров Н.С. – М.: Большая Российская энциклопедия, 1995. – Т. 4, с. 153-154 (радий), с. 282 (рубидий), с. 283 (рутений), с. 300 (свинец), с. 560 (технеций), с. 613 (торий); 1999. - Т. 5, с. 41 (уран), с. 384 (цирконий).
4. Химическая энциклопедия: в 5 т. // Гл. ред. Кнунянц И.Л. – М.: Советская энциклопедия, 1990.– Т.1, с. 78 (актиний), с. 125 (эмериций), с. 241 (барий); Т. 2, с. 284 (калий), с. 286 (калифорний), с.414 (кобальт), с. 577 (лантан); 1992. Т. 3, с. 580 (плутоний).
5. Несмеянов А. Н. Радиохимия. – М.: Химия, 1978. - 560 с.
6. Широков Ю.М., Юдин Н.П. Ядерная физика. – М., Наука, 1980.
7. Козлов В.Ф. Справочник по радиационной безопасности. – 5-е изд., перераб. и доп. – М.: Энергоатомиздат, 1999. – 520 с.
8. Моисеев А.А., Иванов В.И. Справочник по дозиметрии и радиационной гигиене. – М.: Энергоатомиздат, 1992. – 252 с.
9. Кириллов В.Ф., Книжников В.А., Коренков И.П. Радиационная гигиена // Под ред. Л.А. Ильина. – М.: Медицина, 1988. - 336 с.
10. Рихванов Л.П. Общие и региональные проблемы радиоэкологии. – Томск: ТПУ, 1997. – 384 с.
11. Бэгнал К. Химия редких радиоактивных элементов. Полоний – актиний: Пер. с англ. // Под ред. Ю.В. Гагаринского. – М.: Изд-во иностр. лит-ры. – 256 с.
12. Гусев Н.Г., Рубцов П.М., Коваленко В.В., Колобашкин В.В. Радиационные характеристики продуктов деления: Справочник. – М.: Атомиздат, 1974. – 224 с.
13. Трансурановые элементы в окружающей среде // Под ред. У.С. Хэнсона: Пер. с англ. – М.: Мир, 1985. – 344 с.
14. Смыслов А.А. Уран и торий в земной коре. – Л.: Недра, 1974. – 232 с.
15. Ионизирующие излучения: источники и биологические эффекты. Научный комитет ООН по действию атомной радиации (НКДАР). Доклад за 1982 г. в Генеральной Ассамблее. Т.1. – Нью-Йорк, ООН, 1982. – 882 с.
16. Источники, эффекты и опасность ионизирующей радиации // Доклад Научного комитета ООН по действию атомной радиации Генеральной Ассамблее за 1988 год. – М.: Мир, 1992. – 1232 с.
17. Василенко И.Я. Токсикология продуктов ядерного деления. – М.: Медицина, 1999. – 200 с.
18. Израэль Ю.А., Стукин Е.Д. Гамма – излучение радиоактивных выпадений. – М.: Атомиздат, 1967. – 224 с.
19. Алексахин Р.М., Архипов Н.П., Василенко И.Я. Тяжелые естественные радионуклиды в биосфере. – М.: Наука, 1990. – 368 с.
20. Криволуцкий Д.А. и др. Действие ионизирующей радиации на биогеоценоз. – М.: Гидрометеоиздат, 1977. – 320 с.
21. Булдаков Л.А. Радиоактивные вещества и человек.–М.: Энергоатомиздат, 1990 – 160 с.
22. Рузер Л.С. Радиоактивные аэрозоли //Под ред. А.Н. Мартынюка. – М.: Энергоатомиздат, 2001. – 230 с.
23. Журавлев В.Ф. Токсикология радиоактивных веществ. – М.: Энергоатомиздат, 1990. – 336 с.
24. Моисеев А.А. Цезий-137. Окружающая среда – человек. – М.: Энергоатомиздат, 1985. – 121 с.
25. Тихонов М.Н., Муратов О.Э. Альтернативный ядерно-топливный цикл: необходимость и актуальность // Экология промышленного производства, 2009, вып. 4,с. 40-48.
26. Алексахин Р.М., Васильев А.В., Дикарев В.Г. и др. Сельскохозяйственная радиоэкология. – М., Экология, 1991.
27. Чалов П.И. Изотопное фракционирование природного урана. – Фрунзе: Илим, 1975.
28. Пилипенко А.Т. Натрий и калий // Справочник по элементарной химии. – 2-е изд. – Киев: Наукова думка, 1978, с. 316-319.
29. Тихонов М.Н. Радоновая опасность: источники, дозы и нерешенные вопросы // Экологическая экспертиза. Обз.инф., 2009, вып. 5, с. 2-108. – М., ВИНИТИ РАН.
30. Гудзенко В.В., Дубинчук В.Т. Изотопы радия и радона в природных водах. – М.: Наука, 1987. – 157 с.
31. Мартынюк Ю.Н. К вопросу о качестве питьевой воды по радиационному признаку // АНРИ, 1996, №1, с. 64-66.
32. Борисов Н.Б., Ильин Л.А., Маргулис У.Я. и др. Радиационная безопасность при работе с полонием-210 // Под ред. И.В. Петрянова и Л.А. Ильина. – М.: Атомиздат, 1980. – 264 с.
33. Методика выполнения измерений объемной активности полония-210 и свинца-210 в природных водах альфа-бета-радиометрическим методом с радиохимической подготовкой. – М., 2001.
34. Гусев Н.Г., Беляев В.А. Радиоактивные выбросы в биосфере: Справочник. – М.: Энергоатомиздат, 1991. – 255 с.
35. Болсуновский А.Я. Производство ядерных материалов в России и загрязнение окружающей среды. – В кн.: Атом без грифа «Секретно»: точки зрения. – Москва-Берлин, 1992, с. 9-29.
36. Федорова Е.А., Пономарева Р.П., Милакина Л.А. Закономерности поведения 14 С в системе атмосфера-растение в условиях непостоянной концетрации СО 2 в воздухе // Экология, 1985, №5, с. 24-29.
37. Пономарева Р.П., Милакина Л.А., Савина В.И. Закономерности поведения углерода-14 в пищевых цепях человека в условиях действия локального источника выбросов // Атомная промышленность: окружающая среда и здоровье населения / Под ред. Л.А. Булдакова, С.Н. Демина. – М., 1988, с. 240-249.
38. Рублевский В.П., Голенецкий С.П., Кирдин Г.С. Радиоактивный углерод в биосфере. – М.: Атомиздат, 1979. – 150 с.
39. Артемова Н.Е., Бондарев А.А., Карпов В.И., Курдюмов Б.С. и др. Допустимые выбросы радиоактивных и вредных химических веществ в приземном слое атмосферы. – М.: Атомиздат, 1980. – 235 с.
40. Демин С.Н. Проблема углерода-14 в районе ПО «Маяк» // Вопросы радиационной безопасности, 2000, №1, с. 61-66.
41. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Атомная энергия, 1958, Т. 4, №6, с. 576-580.
42. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Наука и всеобщая безопасность, 1991, Т. 1, №4, с. 3-8.
43. Германский А.М. Атмосферный радиоуглерод и смертность в Дании. Интернет-журнал «Коммерческая биотехнология», 2005.
44. Эванс Э. Тритий и его соединения. – М., Атомиздат, 1970.
45. Ленский Л.А. Физика и химия трития. – М., Атомиздат, 1981.
46. Беловодский Л.Ф., Гаевой В.К., Гришмановский В.И. Тритий. – М., Атомиздат, 1985.
47. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. – М., Атомиздат, 1987.
48. Леенсон И.А. 100 вопросов и ответов по химии. – М., АСТ-Астрель, 2002.
49. Дубасов Ю.В., Окунев Н.С., Пахомов С.А. Мониторинг радионуклидов ксенона и криптона-85 в Северо-Западном регионе России в 2007-2008 гг. // Сб.докл. III Межд. ядерного форума 22-26 сент. 2008 г. – СПб.: НОУ ДПО «АТОМПРОФ», 2008, с. 57-62.
50. Ксензенко В.И., Стасиневич Д.С. Химия и технология брома, йода и их соединений. 2-е изд. – М.: Ин.лит., 1995. – 562 с.
51. Бэгнал К. Химия селена, теллура и полония. – М., 1971.
52. Методические указания МУ 2.6.1.082-96. Оценка дозы внутреннего облучения щитовидной железы йодом-131 по результатам определения содержания йода-129 в объектах окружающей среды (Утв. Зам. Главного государственного санитарного врача РФ 24 мая 1996 г.).
53. Гаврилин Ю.И., Волков В.Я., Макаренкова И.И. Ретроспективное восстановление интегральных выпадений йода-131 по населенным пунктам Брянской области России на основе результатов определения в 2008 г. содержания йода-129 в почве // Радиационная гигиена, 2009, Т. 2, №3, с. 38-44.
54. Василенко И.Я., Василенко О.И. Стронций радиоактивный // Энергия: экономика, техника, экология, 2002, №4, с. 26-32.
55. Василенко И.Я. Радиоактивный цезий-137 // Природа, 1999, №3, с. 70-76.
56. Плутониевая экономика: выход или тупик. Плутоний в окружающей среде // Сост. Миронова Н.И. – Челябинск, 1998. – 74 с.
57. Блюменталь У.Б. Химия циркония. – М., 1963.
58. Перцов Л.А. Ионизирующее излучение биосферы. – М.: Атомиздат, 1973. – 288 с.
59. Популярная библиотека химических элементов. Кн.2. Серебро-нильсборий и далее. – 3-е изд. – М.: Наука, 1983. – 573 с.
60. Огородников Б.И. Торон и его дочерние продукты в проблеме ингаляционного облучения // Атомная техника за рубежом, 2006, №6, с. 10-15.
61. Ярмоненко С.П. Радиобиология человека и животных.-М.: Высшая школа, 1988.-424 с.
62. Бабаев Н.С., Демин В.Ф., Ильин Л.А. и др. Ядерная энергетика, человек и окружающая среда /Под ред. акад. А.П. Александрова. – М.: Энергоатомиздат, 1984. – 312 с.
63. Абрамов Ю.В. и др. Определение доз внешнего облучения органов и тканей в соответствии с требованиями НРБ -99 в производственных условиях //Медицина экстремальных ситуаций, 2000, № 3 (6), с.55-60.
64. Алексахин Р.М., Булдаков Л.А., Губанов В.А. и др. Крупные радиационные аварии: последствия и защитные меры /Под общ. ред. Л.А.Ильина и В.А. Губанова. – М.: ИздАТ, 2001. -752 с.
65. Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений: Справочник, 4-е изд. – М.: Энергоатомиздат, 1995.
66. Радиационная медицина. Т.2. Радиационные поражения человека / Под общ. ред. акад. РАМН Л.А.Ильина. –М.:ИздАТ, 2001. -432 с.

Биологические свойства цезия-137 (137 Сs) - одного из наиболее биологически важных радионуклидов поступивших в окружающую среду после аварии на ЧАЭС.

Свойства радионуклида 137 Сs

Цезий-137 - бета-излучатель с периодом полураспада 30.174 года. 137 Сs открыт в 1860 г. немецкими учеными Кирхгофом и Бунзеном. Название получил от латинского слова caesius - голубой, по характерной яркой линии в синей области спектра. В настоящее время известно несколько изотопов цезия. Наибольшее практическое значение имеет 137 Сs , один из наиболее долгоживущих продуктов деления урана.

Ядерная энергетика является источником поступления 137 Сs в окружающую среду. Согласно опубликованным данным в 2000 году реакторами АЭС всех стран мира в атмосферу было выброшено около 22,2 х 10 19 Бк 137 Сs . Выброс 137 Сs осуществляется не только в атмосферу, но и в океаны с атомных подводных лодок, танкеров, ледоколов, оснащенных ядерно-энергетическими установками. Суммарная активность продуктов деления, образовавшихся в ядерном реакторе атомной подводной лодки мощностью 60 МВт при его непрерывной работе в течение одного года, достигает более 3,7 х 10 17 Вк, в том числе 137 Сs - приблизительно 24 х 10 14 Бк. Естественно, что при крупных авариях, происшедших с двумя атомными подводными лодками США («Третер» в 1963 году и «Скорпион» в 1967), большая часть радиоактивных веществ, включая 137 Сs , могла поступить в воду и явиться источником длительного загрязнения.

По своим химическим свойствам цезий близок к рубидию и калию - элементам 1 группы. Радиоизотопы цезия применяются в химических исследованиях, в гаммадефектоскопии, в радиационной технологии, в радиобиологических экспериментах. 137 Сs используется как источник -излучения для контактной и дистанционной лучевой терапии, а также для радиационной стерилизации. Изотопы цезия при любом пути поступления в организм хорошо всасываются.

После аварии на ЧАЭС во внешнюю среду поступило 1.0 МКи цезия-137. В настоящее время это основной дозообразующий радионуклид на территориях, пострадавших от аварии на Чернобыльской АЭС . От его содержания и поведения во внешней среде зависит пригодность загрязненных территорий для полноценной жизни.

Почвы Украинско-Белорусского Полесья имеют специфическую особенность - цезий-137 плохо фиксируется ими и, как следствие, он легко поступает в растения через корневую систему. Поэтому еще в доаварийные времена содержание этого радионуклида в выращенной здесь продукции было в 35-40 раз выше, чем в центральных районах страны. После аварии на ЧАЭС людей пришлось отселять из наиболее пострадавших районов вовсе не из-за опасно высокого радиационного фона - там стало невозможным ведение сельского хозяйства.

В Украине есть места, где нельзя получать чистую продукцию даже при уровне загрязнения цезием-137 в 1 Ки/км 2 .

Биологическое действие 137 Сs

Изотопы цезия, являясь продуктами деления урана, включаются в биологический круговорот и свободно мигрируют по различным биологическим цепочкам. В настоящее время 137 Сs обнаруживается в организме различных животных и человека. Следует отметить, что стабильный цезий входит в состав организма человека и животных в количествах от 0,002 до 0,6 мкг на 1 г мягкой ткани.

Всасывание 137 Сs в ЖКТ животных и человека составляет 100%. В отдельных участках ЖКТ всасывание 137 Сs происходит с различной скоростью. По данным ученых через час после введения всасывается по отношению к введенной дозе: в желудке всасывается 7% 137 Сs , в двенадцатиперстной кишке-77%, в тощей-76%, в подвздошной-78%, в слепой-13%, в поперечно-ободочной кишке-39%.

Через дыхательные пути в организм человека поступление 137 Сs составляет 0,25% величины, поступающей с пищевым рационом. После перорального поступления цезия значительные количества всосавшегося радионуклида секретируются в кишечник, затем реабсорбируются в нисходящих отделах кишечника. Степень реабсорбции цезия может существенно различаться у разных видов животных. Поступив в кровь, он сравнительно равномерно распределяется по органам и тканям. Путь поступления и вид животного не влияют на характер распределения изотопа.

Л. А. Булдаков, Г. К. Королев считают, что изотопы цезия больше всего накапливаются в мышцах. По данным Ю. И. Москалева после внутривенного введения 137 Сs быстро покидает кровяное русло. В первые 10 - 30 мин максимальная концентрация его регистрируется в почках (7-10% в 1 грамме ткани). Затем происходит перераспределение его, и основные количества - до 52,2% - задерживаются в мышечной ткани.

Проводили исследования по распределению 137 Сs в организме свиней. Свиньям скармливали 137 Сs с пищей однократно или повторно в течение 7 суток в суммарных дозах 2,9 или 1,6 кБк. На 1, 7, 14, 28 и 60 суток после введения изотопа животных забивали и исследовали содержание 137 Сs в мышечной ткани. Содержание активности в мышечной ткани животных, получавших 137 Сs в дозе 2,967 кБк, было почти в 2 раза выше, чем у животных, получавших 137 Сs в дозе 1,609 кБк. Уменьшение радиоактивности в мышечной ткани было наиболее выражено в первые 14 суток при обеих дозах радионуклида. Выведение 137 Сs из организма свиней осуществлялось главным образом с мочой. Скорости выведения 137 Сs при однократном и повторных введениях существенно различались. Период полувыведения изотопа при однократном введении составлял 5 суток, а при повторных- 14 суток.

В организме северных оленей, после однократного введения, 137 Сs распределятся таким образом. В мышцах накапливается 100%, в почках - 79, сердце - б7, селезенке - 60, легких - 55, печени - 48 %.

В опытах на собаках, проведенных в 1968 году, было установлено, что при однократным внутри-венным введением 137 Сs в количестве 3,5 – 14 х 10 7 Бк/кг изучал распределение по органам. Показано, что наибольшие количества 137 Сs через 19-81 суток содержатся в скелетных мышцах, печени, почках. Важно отметить, что введенная доза 137 Сs и пол животных не влияют на распределение нуклида по органам и тканям.

Определение 137 Сs в организме человека проводят по измерению гамма-излучения от тела и бета-, гамма-излучению от выделений (моча, кал). Для этой цели используют бета-гамма-радиометры и счетчик излучений человека (СИЧ). По отдельным пикам спектра, соответствующим различным гамма-излучателям, можно определить их активность в организме. С целью профилактики радиационных поражений 137 Сs все работы с жидкими и твердыми соединениями рекомендуется проводить в герметичных боксах. Для предупреждения попадания цезия и его соединений внутрь организма необходимо использовать средства индивидуальной защиты и соблюдать правила личной гигиены.

На рабочем месте без разрешения санэпидемслужбы могут находиться открытые препараты цезия с активностью 0,37- 3,7 мБк (10-100 мкКи).

Неотложная помощь при остром поражении изотопами цезия

Неотложная помощь при поражении изотопами 137 Сs заключается в дезактивации рук и лица водой с мылом, моющими порошками «Эра», «Астра». Необходимо провести промывание носоглотки и ротовой полости водой или физиологическим раствором.

Для ускорения выведения цезия из организма рекомендуют применять в качестве сорбентов: ферроцин, 1,0: 100 мл воды, или бентонит, 20,0: 200 мл воды, с последующим вызыванием рвоты (1 % -ный апоморфин - 0,5 мл под кожу), или обильное промывание желудка водой. После очистки желудка повторное назначение курса лечения ферроцином (1,0 г 2-3 раза в сутки в течение 15-20 суток). В тяжелых случаях гемодиализ (применение аппарата «Искусственная почка»). Всемерное повышение водносолевого обмена. Назначение ацетата калия, 30,0: :200,0, по 1 столовой ложке 5 раз в день. Калиевая диета (изюм, курага) Внутривенное введение лимоннокислого натрия 10% -ного – 2 - З мл. Мочегонные с водной нагрузкой. Внутрь димедрол 0,05 г, антибиотики.

Допустимое поступление 137 Сs в организм человека не должно превышать 7,4 х 10 2 Бк/сутки. Допустимое годовое поступление 137 Сs в организм персонала через органы дыхания составляет 13,3 х 10 4 Бк/год. Допустимая концентрация 137 Сs в воздухе рабочих помещений 5,18 х 10 -1 Бк/л, в воде - 5,5 х 10 2 Бк/л, в атмосферном воздухе 18 х 10 -3 Бк/л.

Миграция 137 Сs в почвах

Выпавший, после аварии на ЧАЭС , на почву 137 Сs прочно удерживается в верхнем гумусированном слое. Со временем происходят его физико-химические превращения, осуществляется миграция по почвенному профилю, накопление растительностью. Для цезия характерно поглощение минеральной частью почв. Элемент внедряется в кристаллические решетки глинистых минералов, прочно связываясь там самой тонкодисперсной частью почвы. Наиболее интенсивно цезий поглощается вермикулитом, флогопитом, гидрофлогопитом, асканитом, гумбрином. Сорбция цезия почвенным поглощающим комплексом после его выпадения в почву осуществляется в первое время крупнодисперсными частицами, смещаясь затем в сторону поглощения мелкодисперсной фракцией. За семь лет доля цезия, фиксированного минеральной частью почвы, увеличилась в серых лесных почвах в 2,5 раза, дерново-подзолистых -4,5 раза, в черноземных - 7 раз и может достигать 80-95% валового содержания элемента в почве. Прочно связывается цезий почвенной органикой, образуя, в частности, гуматы и фульваты. Последние характеризуются значительно большей подвижностью. Увеличивают подвижность металла водорастворимые органические вещества, образующиеся при разложении растительности. При миграции цезия в глубь почвенного горизонта выделяют два типа массопереноса - быстрый (обусловленный передвижением металла вместе с тонкодисперсными частицами) и медленный (обусловленный передвижением водорастворимых форм). В суглинистых разностях дерново-подзолистых почв наблюдается только медленный перенос, в супесчаных и песчаных - и медленный, и быстрый с преобладанием последнего. В среднем доля быстрого переноса составляет 15% всех мигрирующих форм цезия.

Н. В. Тимофеевым-Ресовским с соавторами 137 Сs выделен в отдельную группу изотопов по характеру поведения в системе почва - раствор - в группу, обладающую признаками обменного и необменного поведения. Наиболее важным фактором миграции цезия в системе почва - раствор является изменение его собственной концентрации (он по-разному мигрирует в почвах-грунтах в зависимости от того, в каком количестве находится в них: поведение цезия в системе необменное при микроконцентрациях и обменное в области макроконцентраций).

В силу незначительной гидролизации сорбция 137 Сs слабо зависит от рН почвенного раствора.

Отмечено накопление 137 Сs в пойменных почвах, обусловленное дополнительным привнесением с механическими взвесями во время паводков. В пойменных почвах 137 Сs , как правило, задерживается в верхнем 5-сантиметровом слое. Однако в тех случаях, когда поверхностные горизонты пойменных почв представлены слоями легкого механического состава с низким содержанием гумуса, 137 Сs выщелачивается из этих горизонтов и задерживается в нижележащих. Миграционная способность 137 Сs повышена и в некоторых торфяных почвах, где он энергично поступает в растения. Японские исследователи отмечают факты проникновения 137 Сs в породы (невыветрелые базальты) на глубину 3-5 см.

Накопление радионуклида 137 Сs растениями

Цезий хорошо поглощается растительностью, коэффициент накопления элемента в урожае сельскохозяйственных культур может достигать 100%; накопление идет в основном в надземной фитомассе (до 60% поглощенного элемента). На супесчаных почвах 137 Сs в 7 раз более доступен для растений, чем 137 Сs . Интенсивное вовлечение элемента в биологический круговорот обусловлено кислотностью полесских ландшафтов, благоприятствующих физиологическому накоплению металла организмами, подвижностью металла, а также его аналогией с калием – биохимически активным элементом, дефицит которого в полесских ландшафтах ярко выражен, но который жизненно необходим растениям.

Литература:

  • Бударников В.А., Киршин В.А., Антоненко А.Е. Радиобиологический справочник. – Мн.: Уражай, 1992. – 336 с.
  • Чернобыль не отпускает… (к 50-летию радиоэкологических исследований в Республике Коми). – Сыктывкар, 2009 – 120 с.
  • Журавлев В.Ф. Токсикология радиоактивных веществ. – 2-е, изд., перераб. и доп. – М.: Энергоатомиздат, 1990. – 336 с.

gastroguru © 2017