Постоянные ван дер ваальса формула. Формула Ван-дер-Ваальса

Для реальных газов пользоваться результатами теории идеального газа следует с большой осторожностью. Во многих случаях необходимо переходить к более реалистичным моделям. Одной из большого числа таких моделей может служить газ Ван-дер-Ваальса . В этой модели учитываются собственный объем молекул и взаимодействия между ними. В отличие от уравнения Менделеева - Клапейрона pV= RT, справедливого для идеального газа, уравнение газа Ван-дер-Ваальса содержит два новых параметра а и Ь, не входящих в уравнение для идеального газа и учитывающих межмолекулярные взаимодействия (параметр а) и реальный (отличный от нуля) собственный объем (параметр Ь) молекул. Предполагается, что учет взаимодействия между молекулами в уравнении состояния идеального газа сказывается на величине давления р, а учет их объема приведет к уменьшению свободного для движения молекул пространства - объема V, занимаемого газом. Согласно Ван-дер-Ваальсу уравнение состояния одного моль такого газа записывается в виде:

где Ум - молярный объем величины (а/Ум) и Ь описывают отклонения газа от идеальности.

Величина a/V^, по размерности соответствующая давлению, описывает взаимодействие молекул между собой на больших (по сравнению с размерами самих молекул) расстояниях и представляет так называемое добавочное к внешнему «внутреннее давление» газа р. Константа Ъ в выражении (4.162) учитывает суммарный объем всех молекул газа (равна учетверенному объему всех молекул газа).

Рис. 4.24. К определению константы b в уравнении Ван-дер-Ваальса

Действительно, на примере двух молекул (рис. 4.24) можно убедиться, что молекулы (как абсолютно жесткие шары) не могут сблизиться друг с другом на расстояние, меньшее, чем 2г между их центрами,

т.е. область пространства, «выключенная» из общего объема, занимаемого газом в сосуде, которая приходится на две молекулы, имеет объем

В пересчете на одну молекулу это

ее учетверенный объем.

Поэтому (V M - b) есть доступный для движения молекул объем сосуда. Для произвольного объема V и массы т газа с молярной массой М уравнение (4.162) имеет вид

Рис. 4.25.

где v = т/М - число моль газа, а а"= v 2 a и Ь"= vb - константы (поправки) Ван-дер-Ваальса.

Выражение для внутреннего давления газа в (4.162) записано в виде a/Vj, по следующей причине. Как было сказано в подразделе 1.4.4, потенциальная энергия взаимодействия между молекулами в первом приближении хорошо описывается потенциалом Леннард- Джонса (см. рис. 1.32). На сравнительно больших расстояниях этот потенциал может быть представлен в виде зависимости U ~ г~ ь, где г - расстояние между молекулами. Поскольку сила F взаимодействия между молекулами связана с потенциальной энергией U как F - -grad U(r), то F ~ -г 7 . Число молекул в объеме сферы радиуса г пропорционально г 3 , поэтому суммарная сила взаимодействия между молекулами пропорциональна it 4 , а дополнительное «давление» (сила, отнесенная к площади, пропорциональной г 2) пропорционально г ь (или ~ 1/F 2). При малых значениях г проявляется сильное отталкивание между молекулами, которое косвенно учитывается

коэффициентом Ь.

Уравнение Ван-дер-Ваальса (4.162) может быть переписано в виде полиномиального (вириального) разложения по степеням У м (или У):

Относительно V M это уравнение кубическое, поэтому при заданной температуре Т должно иметь либо один вещественный корень, либо три (далее, полагая, что мы по-прежнему имеем дело с одним моль газа, опустим индекс М в V M , чтобы не загромождать формулы).

На рисунке 4.25 в координатахp(V) при различных температурах Т приведены изотермы, которые получаются в качестве решений уравнения (4.163).

Как показывает анализ этого уравнения, существует такое значение параметра Т- Г* (критическая температура), которое качественно разделяет различные типы его решений. При Т > Т к кривые p(V) монотонно спадают с ростом V, что соответствует наличию одного действительного решения (одно пересечение прямой р = const с изотермой p(V)) - каждому значению давления р соответствует только одно значение объема V. Иными словами, при Т > Т к газ ведет себя примерно как идеальный (точного соответствия нет и оно получается только при Т -> оо, когда энергией взаимодействия между молекулами по сравнению с их кинетической энергией можно пренебречь). При низких температурах, когда Т одному значению р соответствует три значения V, и форма изотерм принципиально изменяется. При Г= Т к изотерма Ван-дер-Ваальса имеет одну особую точку (одно решение). Этой точке соответствуют /^(критическое давление) и V K (критический объем). Эта точка соответствует состоянию вещества, названному критическим, и, как показывают эксперименты, в этом состоянии вещество не является ни газом, ни жидкостью (промежуточное состояние).

Экспериментальное получение реальных изотерм может быть осуществлено с помощью простого устройства, схема которого изображена на рис. 4.26. Устройство - это цилиндр с подвижным поршнем и манометром для измерения давления р. Измерение объема V производят по положению поршня. Вещество в цилиндре поддерживается при определенной температуре Т (находится в термостате).

Рис. 4.26.

Меняя его объем (опуская или поднимая поршень) и измеряя при этом давление, получают изотермуp(V).

Оказывается, что полученные таким образом изотермы (сплошные линии на рис. 4.25) заметно отличаются от теоретических (штрихпунктирная линия). При Т = Т и большйх V уменьшение объема приводит к увеличению давления соответственно расчетной кривой до точки N (штрихпунктирная изотерма на рис. 4.25). После этого уменьшение V не приводит к дальнейшему росту р. Иными словами, точка N соответствует началу конденсации, т.е. переходу вещества из состояния пара в состояние жидкости. При уменьшении объема от точки N к точке М давление остается постоянным, меняется только соотношение между количествами жидкого и газообразного вещества в цилиндре. Давление соответствует равновесию между паром и жидкостью и называется давлением насыщенного пара (отмечено на рис. 4.25 как р„. п). В точке М все вещество в цилиндре представляет собой жидкость. При дальнейшем уменьшении объема изотермы резко поднимаются вверх, что соответствует резкому уменьшению сжимаемости жидкости по сравнению с паром.

При увеличении температуры в системе, т.е. при переходе от одной изотермы к другой, длина отрезка MN уменьшается (А/УУ"при Т 2 > Т), и при Т=Т К он стягивается в точку. Огибающая всех отрезков вида MN образует колоколообразную кривую (бинодаль) - пунктирная кривая MKN на рис. 4.25, отделяющую двухфазную область (под колоколом бинодали) от однофазной - пара или жидкости. При Т> Т к никаким увеличением давления газообразное вещество превратить в жидкость уже нельзя. Этим критерием можно воспользоваться для проведения условного различия между газом и паром: при Т вещество может существовать и в виде пара, и в виде жидкости, но при Т > Т к никаким давлением газ в жидкость перевести нельзя.

В тщательно поставленных экспериментах можно наблюдать так называемые метастабильные состояния, характеризуемые участками МО и NL на изотерме Ван-дер-Ваальса при Т= Т (штрихпунктирная кривая на рис. 4.25). Эти состояния отвечают переохлажденному пару (участок МО) и перегретой жидкости (участок NL). Переохлажденный пар - это такое состояние вещества, когда по своим параметрам оно должно находиться в жидком состоянии, но по своим свойствам продолжает следовать газообразному поведению - стремится, например, расшириться при увеличении объема. И наоборот, перегретая жидкость - такое состояние вещества, когда оно по своим параметрам должно быть паром, но по свойствам остается жидкостью. Оба эти состояния метастабильны (т.е. неустойчивы): при небольшом внешнем воздействии вещество переходят в стабильное однофазное состояние. Участок OL (определенный математически из уравнения Ван-дер- Ваальса) соответствует отрицательному коэффициенту сжатия (с увеличением объема растет и давление!), оно не реализуется в опытах ни при каких условиях.

Константы а и b считаются независящими от температуры и являются, вообще говоря, разными для разных газов. Можно, однако, модифицировать уравнение Ван-дер-Ваальса так, чтобы ему удовлетворяли любые газы, если их состояния описываются уравнением (4.162). Для этого найдем связь между константами а и b и критическими параметрами: р к, V K n Т к. Из (4.162) для моль реального газа получаем 1:

Воспользуемся теперь свойствами критической точки. В этой точке величины йр/dV и tfp/dV 2 равны нулю, так эта точка является точкой перегиба. Из этого следует система трех уравнений:


1 Индекс М при объеме моль газа опущен для упрощения записи. Здесь и далее константы а и Ь по-прежнему приведены к одному моль газа.

Эти уравнения справедливы для критической точки. Решение их относительно/>*, У к, Гадает:

и, соответственно,


Из последнего соотношения в этой группе формул, в частности, следует, что для реальных газов постоянная R оказывается индивидуальной (для каждого газа со своим набором рк, У к, Т к она своя), и только для идеального или для реального газа вдали от критической температуры (при Т » Т к) ее можно полагать равной универсальной газовой постоянной R = k b N A . Физический смысл указанного различия кроется в процессах кластерообразования, происходящих в реальных газовых системах в докритических состояниях.

Критические параметры и константы Ван-дер-Ваальса для некоторых газов представлены в табл. 4.3.

Таблица 4.3

Критические параметры и константы Ван-дер-Ваальса

Если теперь подставить эти значения из (4.168) и (4.169) в уравнение (4.162) и выразить давление, объем и температуру в так называемых приведенных (безразмерных) параметрах л = р/р к, со = V/V K , т = Т/Т к, то оно (4.162) перепишется как:

Это уравнение Ван-дер-Ваальса в приведенных параметрах универсальное для всех ван-дер-ваальсовых газов (т.е. реальных газов, подчиняющихся уравнению (4.162)).

Уравнение (4.170) позволяет сформулировать закон, связывающий три приведенные параметра - закон соответственных состояний: если у каких-либо различных газов совпадают два из трех (л, со, т) приведенных параметров, то должны совпадать и значения третьего параметра. Говорят, что такие газы находятся в соответственных состояниях.

Запись уравнения Ван-дер-Ваальса в виде (4.170) позволяет также распространить связанные с ним представления на случай произвольных газов, которые уже ван-дер-ваальсовскими не являются. Уравнение (4.162), записанное в виде (4.164): p(V) = RT/(V-b)-a/V 2 , напоминает по форме разложение функции р(У) в ряд по степеням V (до второго члена включительно). Если считать (4.164) первым приближением, то уравнение состояния любого газа можно представить в универсальном виде:

где коэффициенты А„(Т) называются вириальными коэффициентами.

При бесконечном числе членов этого разложения оно может точно описать состояние любого газа. Коэффициенты А„(Т) являются функциями температуры. В различных процессах используются различные модели, и для их расчета теоретически оценивается, каким количеством членов этого разложения необходимо пользоваться в случаях разного рода газов для получения желаемой точности результата. Конечно, все модели реальных газов зависят от выбранного вида межмолекулярного взаимодействия, принятого при рассмотрении конкретной задачи.

  • Предложена в 1873 г. голландским физиком Я.Д. Ван-дер-Ваальсом.

Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа. Наибольшее распространение вследствие простоты и физической наглядности получило уравнение Ван-дер-Ваальса (1873).

Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

p (V nb ) = nRT (1.3)

постоянная b учитывает собственный мольный объем молекул.

При понижении температуры межмолекулярное взаимодействие в реальных газах приводит к конденсации (образование жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления (иногда его называют статическим давлением). Изначально величина была учтена в общей форме в уравнении Гирна (1865)

(p + ) (V nb ) = nRT . (1.4)

Ван-дер-Ваальс в 1873 г. дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса, силы притяжения между молекулами (силы Ван-дер-Ваальса ) обратно пропорциональны шестой степени расстояния между ними, или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:

(1.5)

или для одного моля

. (1.6)

Значения постоянных Ван-дер-Ваальса a и b , которые зависят от природы газа, но не зависят от температуры, приведены в таблице 1.3.

Таблица 1.3. Постоянные Ван-дер-Ваальса для различных газов

Газ a , л 2 *бар* моль -2 b,см 3 * моль -1 Газ a, л 2 * бар* моль -2 b, см 3 * моль -1
He 0,03457 23,70 NO 1,358 27,89
Ne 0,2135 17,09 NO 2 5,354 44,24
Ar 1,363 32,19 H 2 O 5,536 30,49
Kr 2,349 39,78 H 2 S 4,490 42,87
Xe 4,250 51,05 NH 3 4,225 37,07
H 2 0,2476 26,61 SO 2 6,803 56,36
N 2 1,408 39,13 CH 4 2,283 42,78
O 2 1,378 31,83 C 2 H 4 4,530 5,714
Cl 2 6,579 56,22 C 2 H 6 5,562 63,80
CO 1,505 39,85 C 3 H 8 8,779 84,45
CO 2 3,640 42,67 C 6 H 6 18,24 115,4

Уравнение (1.6) можно переписать так, чтобы выразить в явном виде давление

(1.7)

или объем

(1.8)

Уравнение (1.8) содержит объем в третьей степени и, следовательно, имеет или три действительных корня, или один действительный и два мнимых. При высоких температурах уравнение (1.8) имеет один действительный корень, и по мере повышения температуры кривые, вычисленные по уравнению Ван-дер-Ваальса, приближаются к гиперболам, соответствующим уравнению состояния идеального газа.

На рис. 1.4 (стр. 7) приведены изотермы, вычисленные по уравнению Ван-дер-Ваальса для диоксида углерода (значения констант a и b взяты из табл. 1.3). Из рисунка видно, что при температурах ниже критической (31,04 °С) вместо горизонтальных прямых, соответствующих равновесию жидкости и пара, получаются волнообразные кривые 12345 с тремя действительными корнями, из которых только два, 1 и 5, физически осуществимы. Третий корень (точка 3) физически не реален, поскольку находится на участке кривой 234, противоречащем условию стабильности термодинамической системы . Состояния на участках 12 и 54, которые соответствуют переохлажденному пару и перегретой жидкости, соответственно, являются неустойчивыми (метастабильными) и могут быть лишь частично реализуемы в специальных условиях. Так, осторожно сжимая пар выше точки 1 (рис. 1.4), можно подняться по кривой 12. Для этого необходимо отсутствие в паре центров конденсации, и в первую очередь пыли. В этом случае пар оказывается в пересыщенном, т.е. переохлажденном состоянии. И наоборот, образованию капелек жидкости в таком паре способствуют, например, попадающие в него ионы. Это свойство пересыщенного пара используется в известной камере Вильсона (1912), применяемой для регистрации заряженных частиц. Движущаяся заряженная частица, попадая в камеру, содержащую пересыщенный пар, и соударяясь с молекулами, образует на своем пути ионы, создающие туманный след – трек, который фиксируется фотографически.

Согласно правилу Максвелла (the Maxwell construction ), которое имеет теоретическое обоснование, для того, чтобы расчетная кривая соответствовала экспериментальной равновесной изотерме, нужно вместо кривой 12345 провести горизонтальную прямую 15 так, чтобы площади 1231 и 3453 были равны. Тогда ордината прямой 15 будет равна давлению насыщенного пара, а абсциссы точек 1 и 5 – мольным объемам пара и жидкости при данной температуре.

По мере повышения температуры все три корня сближаются, и при критической температуре T c все три корня становятся равными. В критической точке изотерма Ван-дер-Ваальса имеет точку перегиба с горизонтальной касательной , то есть

, (1.9)

. (1.10)

Совместное решение этих уравнений дает:

что позволяет определять константы уравнения Ван-дер-Ваальса из критических параметров газа. Соответственно, согласно уравнению Ван-дер-Ваальса, критический фактор сжимаемости Z c для всех газов должен быть равен

(1.14)

Из таблицы 1.2 видно, что хотя значение Z c для реальных газов приблизительно постоянно (0,27 – 0,30 для неполярных молекул), оно все же заметно меньше вытекающего из уравнения Ван-дер-Ваальса. Для полярных молекул наблюдается еще большее расхождение.

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции f(p,V,T), описывающей свойства реальных газов;

2) уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния (см. ниже);

3) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван-дер-Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме (см. 1.1, 1.2).

Причиной недостаточной точности уравнения Ван-дер-Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров a и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван-дер-Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения (1.5) предложил Клаузиус, и обе они связаны с усложнением вида постоянной b . Больцман получил три уравнения этого типа, изменяя выражения для постоянной a . Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее 5 индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне p, V, T, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло (см. табл. 1.4).

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры мо­лекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона-Менделеева (42.4) pV m =RT (для моля газа), описывающее иде­альный газ, для реальных газов непри­годны.

Учитывая собственный объем молекул и сил межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальса (1837-1923) вывел уравнения состояния реального газа. Ван-дер-Ваальсом в урав­нение Клапейрона-Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые про­тиводействуют проникновению в занятый молекулой объем других молекул, сводит­ся к тому, что фактический свободный объем, в котором могут двигаться молеку­лы реального газа, будет не V m , a V m - b , где b - объем, занимаемый самими молекулами. Объем b равен учетверенному соб­ственному объему молекул. Если, напри­мер, в сосуде находятся две молекулы, то центр любой из них не может при­близиться к центру другой молекулы на расстояние, меньшее диаметра d молеку­лы. Это означает, что для центров обеих молекул оказывается недоступным сфери­ческий объем радиуса d, т. е. объем, рав­ный восьми объемам молекулы, а в расче­те на одну молекулу - учетверенный объем молекулы.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появле­нию дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутрен­нее давление обратно пропорционально квадрату молярного объема, т. е.

p" = a/V 2 m , (61.1)

где а- постоянная Ван-дер-Ваальса, ха­рактеризующая силы межмолекулярного притяжения, V m - молярный объем.

Вводя эти поправки, получим уравне­ние Ван-дер-Ваальса для моля газа (урав­нение состояния реальных газов):

(p+a/V 2 m )(V m -b)=RT. (61.2)

Для произвольного количества вещества v газа (v =т/М) с учетом того, что V = vV m , уравнение Ван-дер-Ваальса примет вид

где поправки а и b - постоянные для каж­дого газа величины, определяемые опыт­ным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b ).

При выводе уравнения Ван-дер-Вааль­са сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравне­ние состояния идеального газа.

Уравнение Ван-дер-Ваальса не единствен­ное уравнение, описывающее реальные газы. Существуют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматриваются из-за их сложности.

§ 62. Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ва­альса - кривые зависимости р от V m при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четы­рех различных температур; рис. 89) имеют довольно своеобразный характер. При вы­соких температурах (T>T к) изотерма ре­ального газа отличается от изотермы иде­ального газа только некоторым искажени­ем ее формы, оставаясь монотонно спада­ющей кривой. При некоторой температуре Т к на изотерме имеется лишь одна точка перегиба К . Эта изотерма называется кри­тической, соответствующая ей температу­ра T к - критической температурой. Кри­тическая изотерма имеет лишь одну точку перегиба К, называемую критической точ­кой; в этой точке касательная к ней па­раллельна оси абсцисс. Соответствующие этой точке объем V к и давление р к на­зываются также критическими. Состояние с критическими параметрами (р к, V к , Т к ) называется критическим состоянием. При низких температурах (Т<Т к ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм пре­образуем уравнение Ван-дер-Ваальса (61.2) к виду

pV 3 m -(RT+pb) V 2 m +aV m -ab=0.

Уравнение (62.1) при заданных р и Т является уравнением третьей степени относительно V m ; следовательно, оно мо­жет иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь ве­щественные положительные корни. Поэто­му первому случаю соответствуют изотер­мы при низких температурах (три значения объема газа V 1 , V 2 и V 3 отвечают (символ «т» для простоты опускаем) одному зна­чению давления р 1 ), второму случаю- изотермы при высоких температурах.

Рассматривая различные участки изо­термы при Т<Т к (рис.90), видим, что на участках 1 -3 и 5-7 при уменьшении объема V m давление р возрастает, что естественно. На участке 3-5 сжатие ве­щества приводит к уменьшению давления; практика же показывает, что такие со­стояния в природе не осуществляются. Наличие участка 3-5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное измене­ние состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7-6-2-1. Часть 7-6 отвечает газообразному со­стоянию, а часть 2-1 - жидкому. В со­стояниях, соответствующих горизонталь-

ному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном со­стоянии при температуре ниже критиче­ской называется паром, а пар, находящий­ся в равновесии со своей жидкостью, на­зывается насыщенным.

Данные выводы, следующие из анали­за уравнения Ван-дер-Ваальса, были под­тверждены опытами ирландского ученого Т. Эндрюса (1813-1885), изучавшего изо­термическое сжатие углекислого газа. От­личие экспериментальных (Эндрюс) и тео­ретических (Ван-дер-Ваальс) изотерм за­ключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором - волнообразные.

Для нахождения критических пара­метров подставим их значения в уравне­ние (62.1) и запишем

p к V 3 -(RT к +p к b)V 2 +aV-ab= 0

(символ «т» для простоты опускаем). По­скольку в критической точке все три корня совпадают и равны V к , уравнение приво­дится к виду

p к (V-V к ) 3 = 0,

p к V 3 -3p к V к V 2 +3p к V 2 к V-p к V к = 0.

Так как уравнения (62.2) и (62.3) тожде­ственны, то в них должны быть равны и коэффициенты при неизвестных соответ­ствующих степеней. Поэтому можно за­писать

ркV 3 к =ab, 3р к V 2 к =а, 3p к V к =RT к +p к b. Решая полученные уравнения, найдем: V к = 3b, р к = а/(27b 2), T к =8a/(27Rb}.

Если через крайние точки горизонталь­ных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая об­ласть двухфазных состояний вещества. Эта кривая и критическая изотерма делят

диаграмму р, V m под изотермой на три области: под колоколообразной кривой располагается область двухфазных состо­яний (жидкость и насыщенный пар), сле­ва от нее находится область жидкого со­стояния, а справа - область пара. Пар отличается от остальных газообразных со­стояний тем, что при изотермическом сжа­тии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет пря­молинейный участок 2-6, соответствую­щий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображае­мые участками ван-дер-ваальсовой изо­термы 5-6 и 2-3. Эти неустойчивые со­стояния называются метастабильными. Участок 2-3 изображает перегретую жидкость, 5-6 - пересыщенный пар. Обе фазы ограниченно устойчивы

При достаточно низких температурах изотерма пересекает ось V m , переходя в область отрицательных давлений (ниж­няя кривая на рис. 92). Вещество под отрицательным давлением находится в со­стоянии растяжения. При некоторых усло­виях такие состояния также реализуются. Участок 8 -9 на нижней изотерме соответ­ствует перегретой жидкости, участок 9 - 10 - растянутой жидкости.

газ плазма кинетика термодинамический

В газе взаимодействие между молекулами слабо. По мере его усиления свойства газа все ближе отклоняются от свойств идеальных газов, и, в конце концов, переходит в концентрированное состояние - жидкость. В жидкости взаимодействие между молекулами велико и, следовательно, свойства жидкости зависят от конкретного рода жидкости. Поэтому невозможно установить какие либо общие формулы, которые количественно описывали бы свойства жидкости. Можно, однако, найти некоторую интерполяционную формулу, качественно описывающую переход между жидкостью и газом. Эта формула должна давать правильные результаты в двух предельных случаях. Для разреженных газов она должна переходить в формулы идеальных газов. При увеличении плотности она должна учитывает ограниченную сжимаемость веществ. Для получения такой формулы исследуем более подробно исследовать отклонение от идеальности при высоких температурах. Будем рассматривать одноатомный газ. По тем же соображениям формулы будут применимы и к многоатомным газам. Описанный ранее характер взаимодействия атомов газа позволяет определить вид первых членов разложения В(Т) относительно степени, обратной Т, при этом будем считать малым отношение U 0 /kT << 1.

Имея в виду, что U 12 есть функция только расстояния r между атомами, имеем. Разбивая область интегрирования по dr на две части, запишем:


Но при значениях r от 0 до 2r 0 потенциальная энергия U 12 очень велика. Поэтому в первом интеграле можно пренебречь членом exp(-U 12 /kT) по сравнению с единицей. Тогда интеграл становится равным положительной величине b = 16рr 0 3 /3 (если для одноатомного газа рассматривать r как радиус атома, то b есть его учетверенный объем). Во втором интеграле везде |U 12 |/kT < U 0 /kT << 1. Поэтому можно разложить подынтегральное выражение по степеням U 12 /kT, ограничиваясь первым неисчезающим членом. Тогда второй интеграл становится равным

где а - положительная постоянная. Таким образом, находим, что

Находим свободную энергию газа

Подставим в это выражение

которое мы получали раньше из статистической суммы для идеального газа. Тогда получим

При выводе формулы для свободной энергии газа мы предполагаем, что газ, недостаточного разрежен для того, чтобы считаться идеальным, однако имеет достаточно большой объем (так, что было можно пренебречь тройными и т.д. взаимодействиями), т.е. расстояние между молекулами значительно больше, чем их размеры. Можно сказать, что объем V газа, во всяком случае, значительно больше, чем Nb. Поэтому

Следовательно

В таком виде эта формула удовлетворяет поставленным выше условиям, т.к. при больших V она переходит в формулу для свободной энергии идеального газа, а при малых V она обнаруживает невозможность беспредельного сжатия газа (при V < Nb аргумент логарифма становится отрицательным). Зная свободную энергию, можно определить давление газа:

Это и есть искомое уравнения состояния реального газа - уравнение Ван-дер-Ваальса. Она является лишь одной из многих возможных интерполяционных формул. Ян Ван-дер-Ваальс вывел это уравнение в 1873 году (нобелевская премия 1910 года).

Энтропия реального газа из (*):

Энергия E = F + TS

Отсюда видно, что теплоемкость Ван-дер-Ваальсовского газа совпадет с теплоемкостью идеального газа (зависит только от Т) и может быть постоянной. Теплоемкость С р, как легко убедиться, зависит не только от Т, но и от V и поэтому не может сводиться к постоянной. Второй член в Е соответствует энергии взаимодействий газа. Он отрицателен, т.к. преобладают силы притяжения.

Приведенное уравнение состояния.

Запишем уравнение Ван-дер-Ваальса для одного моля газа:

Зависимости P(V) при постоянной температуре называются изотермами Ван-дер-Ваальса. Среди различных изотерм есть одна, которой соответствует критическое состояние, математически характеризуемое точкой перегиба. Приравнивая к нулю первую и вторую производные.

Уравнение Клапейрона-Менделеева описывает идеальные газы. Ван-дер-Ваальс предложил в этом уравнении учесть собственный объем молекул и силы межмолекулярного взаимодействия:

1.Наличие сил отталкивания между молекулами приводит к тому, что фактический объем, в котором могут двигаться молекулы, равен V m - b, где V m - молярный объем, b - объем, занятый самими молекулами.

2.Наличие сил притяжения между молекулами приводит к появлению дополнительного давления на газ p`=a/V m 2 , где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного взаимодействия.

Введя эти поправки в уравнение Клапейрона-Менделеева, получим уравнение Ван-дер-Ваальса для 1 моля газа

(p + a/V m 2)(V m - b) = RT или для произвольного количества вещества (p + n 2 a/V 2)(V/n - b) = RT, где поправки a и b - постоянные для каждого газа величины, определяемые из эксперимента (записываются уравнения Ван-дер-Ваальса для двух состояний и решаются относительно a и b).

Экспериментальные изотермы реального газа (СO 2) (т.е. зависимости p от V m при фиксированной Т) для различных температур приведены на рис.2. Для удобства V m заменена на V. При высоких температурах T > T к изотермы реального газа мало отличаются от изотермы идеального газа. При некоторой температуре Т к появляется точка перегиба. Эта изотерма называется критической , а соответствующие ей температура Т к, объем V к и давление p к, - называются критическими . Состояние с критическими параметрами называется критическим состоянием. При более низких температурах все изотермы имеют горизонтальный участок, причем разность V 2 - V 6 молярных объемов горизонтальных участков возрастает с понижением температуры. Все докритические изотермы (Т < Т к ) описывают переход вещества из газообразного состояния в жидкое (рис.3): участок 1®2 соответствует газообразному состоянию (вещество в газообразном состоянии при Т<Т к называется паром ), участок 2®6 соответствует переходу веществ из газообразного в жидкое состояние и участок 6®7 соответствует жидкому состоянию (участок 6®7 почти вертикален вследствие малой сжимаемости жидкости). Пар, находящийся в равновесии со своей жидкостью , называется насыщенным. Точка 6 соответствует состоянию кипящей жидкости, точка 2 - соответствует состоянию сухого насыщенного пара , а любая точка на участке 2-6 соответствует состоянию влажного пара (влажный пар является двухфазной системой, состоящей из кипящей жидкости и сухого насыщенного пара ).



Рассмотрим теперь теоретические изотермы Ван-дер-Ваальса, т.е. кривые зависимости p от V m при фиксированных Т (для удобства V m заменена на V). На рис.4 кривая приведена для Т < Т к (при Т > Т к эти кривые схожи с экспериментальными на рис.2). Для экспериментальных изотерм при Т < Т к наблюдается горизонтальный участок (рис.2), а для теоретических - волнообразный (рис.4). Для объяснения этого различия следует иметь в виду, что уравнение Ван-дер-Ваальса является уравнением третьей степени относительно V (при заданных р и Т) и, следовательно, оно может иметь либо три вещественных корня, либо два мнимых и один вещественный корни. Физический смысл имеют только вещественные корни. Поэтому первый случай соответствует изотермам при низких температурах (три вещественных корня), а второй - изотермам при высоких температурах (один вещественный корень). Изотерма при Т < Т к на участках 1®2®3 и 5®6®7 при уменьшении объема V показывает возрастание давления р, что естественно. Однако на участке 3®4®5 уменьшение объема (сжатие вещества) приводит к уменьшению давления - это противоречит эксперименту. Наличие участка 3®4®5 означает, что при постепенном изменении объема вещество не может оставаться в виде однородной среды и в в действительности происходит распад вещества на две фазы. Таким образом, истинная (экспериментальная) изотерма будет иметь вид ломаной линии 1®2®6®7. При некоторых условиях могут быть реализованы состояния, изображаемые участками 2®3 и 5®6 - эти неустойчивые состояния называются метастабильными и называются перегретой жидкостью (участок 5®6) и пересыщенным паром (участок 2®3).

P T к Т 3 p 7 p

7

gastroguru © 2017