Основные типы дифференциальных уравнений 1 го порядка. Типы дифференциальных уравнений первого порядка

Простейшим д.у.1 является уравнение вида Как известно из курса интегрального исчисления, функцияy находится интегрированием

Определение. Уравнение вида называется дифференциальным уравнением сразделенными переменными. Его можно записать в виде

Проинтегрируем обе части уравнения, получим так называемый общий интеграл (или общее решение).

Пример.

Решение. Запишем уравнение в виде
Проинтегрируем обе части уравнения:

(общий интеграл дифференциального уравнения).

Определение. Уравнение вида называется уравнениемс разделяющимися переменными, если функции можно представить в виде произведения функций

т. е. есть уравнение имеет вид

Чтобы решить такое дифференциальное уравнение, нужно привести его к виду дифференциального уравнения с разделенными переменными, для чего разделим уравнение на произведение
Действительно, разделив все члены уравненияна произведение
,

–дифференциальное уравнение с разделенными переменными.

Для решения его достаточно почленно проинтегрировать

При решении дифференциального уравнения с разделяющимися переменными можно руководствоваться следующим алгоритмом (правилом) разделения переменных.

Первый шаг. Если дифференциальное уравнение содержит производную , ее следует записать в виде отношения дифференциалов:

Второй шаг. Умножим уравнение на
, затем сгруппируем слагаемые, содержащие дифференциал функции и дифференциал независимой переменной
.

Третий шаг. Выражения, полученные при
, представить в виде произведения двух множителей, каждый из которых содержит только одну переменную (
). Если после этого уравнение примет видто, разделив его на произведение
, получим дифференциальное уравнение с разделенными переменными.

Четвертый шаг. Интегрируя почленно уравнение, получим общее решение исходного уравнения (или его общий интеграл).

Рассмотрим уравнения

№ 2.

№ 3.

Дифференциальное уравнение № 1 является дифференциальным уравнением с разделяющимися переменными, по определению. Разделим уравнение на произведение
Получим уравнение

Интегрируя, получим



или

Последнее соотношение есть общий интеграл данного дифференциального уравнения.

В дифференциальном уравнении № 2 заменим
умножим на
, получим



общее решение дифференциального уравнения.

Дифференциальное уравнение № 3 не является уравнением с разделяющимися переменными, т. к., записав его в виде

или
,

видим, что выражение
в виде произведения двух множителей (один –

только с y, другой – только с х ) представить невозможно. Заметим, что иногда нужно выполнить алгебраические преобразования, чтобы видеть, что данное дифференциальное уравнение – с разделяющимися переменными.

Пример № 4 . Дано уравнение Преобразуем уравнение, вынося общий множитель слева
Разделим левую и правую части уравнения на произведение
получим

Проинтегрируем обе части уравнения:



откуда
– общий интеграл данного уравнения. (а)

Заметим, что если постоянную интегрирования записать в виде
, то общий интеграл данного уравнения может иметь другую форму:

или
– общий интеграл. (б)

Таким образом, общий интеграл одного и того же дифференциального уравнения может иметь различную форму. Важно в любом случае доказать, что полученный общий интеграл удовлетворяет данному дифференциальному уравнению. Для этого нужно продифференцировать по х обе части равенства, задающего общий интеграл, учитывая, что y есть функция от х . После исключения с получим одинаковые дифференциальные уравнения (исходное). Если общий интеграл
, (вид (а )), то



Если общий интеграл
(вид (б)), то


Получим то же уравнение, что и в предыдущем случае (а).

Рассмотрим теперь простые и важные классы уравнений первого порядка, приводящиеся к уравнениям с разделяющимися переменными.


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

К выполнению контрольной работы №3

Указания

(темы 12-16)

Тема 12. Дифференциальные уравнения 1-го порядка.

Пискунов, гл. VIII, § 1-8, упр. 1-68

Данко, часть II, гл. IV, §1

12.1 Определение дифференциального уравнения первого порядка.

1.Определение . Равенство, связывающее независимую переменную х , функцию у и производные (или дифференциалы) этой функции называются дифференциальным уравнением первого порядка (DY 1) т.е.

F (x,y,y")=0 или y"=f (x,y)

Решить дифференциальное уравнение первого порядка – значит, найти неизвестную функцию y .

2.Общим решением дифференциального уравнения первого порядка называется функция y= j (x,c) , где C - постоянная, которая при подстановке в дифференциальное уравнение первого порядка обращает его в тождество. На плоскости XOY общее решение y=j(x,c) выражает семейство интегральных кривых.

3. Всякое решение y= j (x,С 0) полученное из общего решения при конкретном значении С=С 0 называется частным решением дифференциального уравнения первого порядка.

4. Задача отыскания частного решения дифференциального уравнения первого порядка , удовлетворяющего начальному условию

Или , или

- называется задачей Коши

5. -ДУ 1 с разделяющимися переменными.

6. - ОДУ 1 – однородное дифференциальное уравнение 1-го порядка или , где , - однородные функции одного измерения. Используется подстановка

7. , где . ДУ 1 , приводимое к однородному подстановкой

Где - точка пересечения прямых

Если , то используется подстановка

8. , где - называется уравнением в полных дифференциалах.

Где - полный дифференциал функции

Решить данное уравнение- значит, найти функцию и .

9. - линейное ДУ 1 (ЛДУ 1)

Если , то уравнение неоднородное,

Если , то уравнение однородное.

ЛДУ 1 интегрируются:

1) Методом Бернулли (с помощью подстановки y = иv , где u и v -пока неизвестные функции)

2) Методом Лагранжа, варьируя произвольную постоянную.

10. , где m - число, m¹0 , m¹1 - дифференциальное уравнение Бернулли, решаемое либо с помощью подстановки y= uv , либо методом Лагранжа (см. пункт 9).

12.2. Примеры решения задач.

Задача 1. Найти частное решение ДУ 1 , удовлетворяющему начальному условию .

Решение : Данное уравнение с разделяющимися переменными.

Т.к. , то уравнение примет вид:

Или - после отделения переменных.

Интегрируя обе части последнего уравнения, получим:

Или -общее решение

Используя начальное условие , , находим . Тогда из общего решения выделяется частное решение:

Задача 2.



Решение: Данное уравнение является однородным, так как коэффициенты при dx и dy суть однородные функции одного и того же измерения (второго) относительно переменных x и y . Применяем подстановку y=xt , где t - некоторая функция аргумента x . Если y= xt , то дифференциал dy = d(xt) = tdx+ xdt , и данное уравнение примет вид:

2xxtdt+(x²t²-x²) (tdx+xdt)= 0

Сократив на , будем иметь:

2tdx+(t²-1) (tdx+xdt)=0

2tdx+(t²-1) tdx+x (t²-1)dt=0

t(2+t²-1) dx+x (t²-1)dt=0

t(1+t²)dx= x(1-t²)dt; .

Мы получили уравнение с разделёнными переменными относительно x и t . Интегрируя, находим общее решение этого уравнения:

Потенцируя, находим , или x(1+t²)=Ct . Из введённой подстановки следует, что . Следовательно, или x²+y²= Cy – общее решение данного уравнения.

Задача 3. Найти общее решение уравнения y"-y tg x=2 xsec x.

Решение: Данное уравнение является линейным, так как оно содержит искомую функцию y и её производную y" в первой степени и не содержит их произведений.

Применяем подстановку y= uv , где u и v –некоторые неизвестные функции аргумента x . Если y=uv , то y"= (uv)"= u"v+uv" и данное уравнение примет вид: u"v+uv"-uvtg x= 2x sec x,

v(u"-utg x)+ uv"= 2xsec x. (1)

Так как искомая функция y представлена в виде произведения двух других неизвестных функций, то одну из них можно выбрать произвольно. Выберем функцию u так, чтобы выражение, стоящее в круглых скобках левой части неравенства (1), обращалось в нуль, т.е выберем функцию u так, чтобы имело место равенство

u"-utg x= 0 (2)

При таком выборе функции u уравнение (1) примет вид

uv"= 2x sec x. (3)

Уравнение (2) есть уравнение с разделяющимися переменными относительно u и x. Решим это уравнение:

ln u= -ln cos x , или

(Чтобы равенство (2) имело место, достаточно найти одно какое-либо частное решение, удовлетворяющее этому уравнению. Поэтому для простоты при интегрировании этого уравнения находим то частное решение, которое соответствует значению произвольной постоянной C=0.) Подставив в (3) найденное выражение для u, получим:

secxv"= 2xsecx; v"= 2x; dv= 2xdx. Интегрируя, получаем v=x²+C . Тогда y=secx(x²+C) - общее решение данного уравнения.

12.3.Вопросы для самоконтроля.

1. Какое уравнение называется дифференциальным?

2. Как определяется порядок уравнения? Примеры.

3. Что значит решить ?

4. Какая функция называется решением ?

5. Какое решение называется общим, частным?

6. Как найти частное решение по начальным условиям? Записать план операций, выполняемых при решении на примере y"- 2x= 0 при начальных условиях y (-2)= 4.

7. Сформулировать геометрический смысл общего и частного решения .

Дифференциальное уравнение - это уравнение, в которое входят функция и одна или несколько ее производных. В большинстве практических задач функции представляют собой физические величины, производные соответствуют скоростям изменения этих величин, а уравнение определяет связь между ними.


В данной статье рассмотрены методы решения некоторых типов обыкновенных дифференциальных уравнений, решения которых могут быть записаны в виде элементарных функций , то есть полиномиальных, экспоненциальных, логарифмических и тригонометрических, а также обратных им функций. Многие из этих уравнений встречаются в реальной жизни, хотя большинство других дифференциальных уравнений нельзя решить данными методами, и для них ответ записывается в виде специальных функций или степенных рядов, либо находится численными методами.


Для понимания данной статьи необходимо владеть дифференциальным и интегральным исчислением, а также иметь некоторое представление о частных производных. Рекомендуется также знать основы линейной алгебры в применении к дифференциальным уравнениям, особенно к дифференциальным уравнениям второго порядка, хотя для их решения достаточно знания дифференциального и интегрального исчисления.

Предварительные сведения

  • Дифференциальные уравнения имеют обширную классификацию. В настоящей статье рассказывается об обыкновенных дифференциальных уравнениях , то есть об уравнениях, в которые входит функция одной переменной и ее производные. Обыкновенные дифференциальные уравнения намного легче понять и решить, чем дифференциальные уравнения в частных производных , в которые входят функции нескольких переменных. В данной статье не рассматриваются дифференциальные уравнения в частных производных, поскольку методы решения этих уравнений обычно определяются их конкретным видом.
    • Ниже приведены несколько примеров обыкновенных дифференциальных уравнений.
      • d y d x = k y {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=ky}
      • d 2 x d t 2 + k x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+kx=0}
    • Ниже приведены несколько примеров дифференциальных уравнений в частных производных.
      • ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}=0}
      • ∂ u ∂ t − α ∂ 2 u ∂ x 2 = 0 {\displaystyle {\frac {\partial u}{\partial t}}-\alpha {\frac {\partial ^{2}u}{\partial x^{2}}}=0}
  • Порядок дифференциального уравнения определяется по порядку старшей производной, входящей в данное уравнение. Первое из приведенных выше обыкновенных дифференциальных уравнений имеет первый порядок, в то время как второе относится к уравнениям второго порядка. Степенью дифференциального уравнения называется наивысшая степень, в которую возводится один из членов этого уравнения.
    • Например, приведенное ниже уравнение имеет третий порядок и вторую степень.
      • (d 3 y d x 3) 2 + d y d x = 0 {\displaystyle \left({\frac {{\mathrm {d} }^{3}y}{{\mathrm {d} }x^{3}}}\right)^{2}+{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0}
  • Дифференциальное уравнение является линейным дифференциальным уравнением в том случае, если функция и все ее производные стоят в первой степени. В противном случае уравнение является нелинейным дифференциальным уравнением . Линейные дифференциальные уравнения примечательны тем, что из их решений можно составить линейные комбинации, которые также будут решениями данного уравнения.
    • Ниже приведены несколько примеров линейных дифференциальных уравнений.
      • d y d x + p (x) y = q (x) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+p(x)y=q(x)}
      • x 2 d 2 y d x 2 + a x d y d x + b y = 0 {\displaystyle x^{2}{\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+ax{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=0}
    • Ниже приведены несколько примеров нелинейных дифференциальных уравнений. Первое уравнение является нелинейным из-за слагаемого с синусом.
      • d 2 θ d t 2 + g l sin ⁡ θ = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}\theta }{{\mathrm {d} }t^{2}}}+{\frac {g}{l}}\sin \theta =0}
      • d 2 x d t 2 + (d x d t) 2 + t x 2 = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+\left({\frac {{\mathrm {d} }x}{{\mathrm {d} }t}}\right)^{2}+tx^{2}=0}
  • Общее решение обыкновенного дифференциального уравнения не является единственным, оно включает в себя произвольные постоянные интегрирования . В большинстве случаев число произвольных постоянных равно порядку уравнения. На практике значения этих констант определяются по заданным начальным условиям , то есть по значениям функции и ее производных при x = 0. {\displaystyle x=0.} Число начальных условий, которые необходимы для нахождения частного решения дифференциального уравнения, в большинстве случаев также равно порядку данного уравнения.
    • Например, в данной статье будет рассмотрено решение приведенного ниже уравнения. Это линейное дифференциальное уравнение второго порядка. Его общее решение содержит две произвольные постоянные. Для нахождения этих постоянных необходимо знать начальные условия при x (0) {\displaystyle x(0)} и x ′ (0) . {\displaystyle x"(0).} Обычно начальные условия задаются в точке x = 0 , {\displaystyle x=0,} , хотя это и не обязательно. В данной статье будет рассмотрено также, как найти частные решения при заданных начальных условиях.
      • d 2 x d t 2 + k 2 x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+k^{2}x=0}
      • x (t) = c 1 cos ⁡ k x + c 2 sin ⁡ k x {\displaystyle x(t)=c_{1}\cos kx+c_{2}\sin kx}

Шаги

Часть 1

Уравнения первого порядка

При использовании этого сервиса некоторая информация может быть передана YouTube.

Эту страницу просматривали 69 354 раз.

Была ли эта статья полезной?

Дифференциальное уравнение (ДУ) - это уравнение ,
где - независимые переменные, y - функция и - частные производные.

Обыкновенное дифференциальное уравнение - это дифференциальное уравнение, которое имеет только одну независимую переменную, .

Дифференциальное уравнение в частных производных - это дифференциальное уравнение, которое имеет две и более независимых переменных.

Слова “обыкновенные“ и "в частных производных" могут опускаться, если ясно, какое уравнение рассматривается. В дальнейшем рассматриваются обыкновенные дифференциальные уравнения.

Порядок дифференциального уравнения - это порядок старшей производной.

Вот пример уравнения первого порядка:

Вот пример уравнения четвертого порядка:

Иногда дифференциальное уравнение первого порядка записывается через дифференциалы:

В этом случае переменные x и y являются равноправными. То есть независимой переменной может быть как x так и y . В первом случае y является функцией от x . Во втором случае x является функцией от y . Если необходимо, мы можем привести это уравнение к виду, в котором явно входит производная y′ .
Разделив это уравнение на dx , мы получим:
.
Поскольку и , то отсюда следует, что
.

Решение дифференциальных уравнений

Производные от элементарных функций выражаются через элементарные функции. Интегралы от элементарных функций часто не выражаются через элементарные функции. С дифференциальными уравнениями дело обстоит еще хуже. В результате решения можно получить:

  • явную зависимость функции от переменной;

    Решение дифференциального уравнения - это функция y = u(x) , которая определена, n раз дифференцируема, и .

  • неявную зависимость в виде уравнения типа Φ(x, y) = 0 или системы уравнений;

    Интеграл дифференциального уравнения - это решение дифференциального уравнения, которое имеет неявный вид.

  • зависимость, выраженную через элементарные функции и интегралы от них;

    Решение дифференциального уравнения в квадратурах - это нахождение решения в виде комбинации элементарных функций и интегралов от них.

  • решение может не выражается через элементарные функции.

Поскольку решение дифференциальных уравнений сводится к вычислению интегралов, то в состав решения входит набор постоянных C 1 , C 2 , C 3 , ... C n . Количество постоянных равно порядку уравнения.Частный интеграл дифференциального уравнения - это общий интеграл при заданных значениях постоянных C 1 , C 2 , C 3 , ... , C n .


Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

gastroguru © 2017