Сила притяжения обозначение. Определение и формула закона всемирного тяготения

Что такое сила?

Каждый из нас постоянно встречается с различными случаями действия тел друг на друга. В результате взаимодействия скорость движения какого-либо тела меняется.

Тело может начать движение или остановиться, а может изменить направление скорости своего движения.

Когда мы пинаем мяч – он начинает двигаться

Когда мяч попадает в сетку ворот, то останавливается

А если мы промазали и мяч попадает в штангу – то отскакивает от нее в другую сторону, т.е. изменяет направления скорости.

Часто не указывают, какое тело и как действовало на данное тело. Просто говорят, что на тело действует сила или к нему приложена сила. То есть, рассматривая пример с мячем, нам не всегда важно, что конкретно на него повлияло. Мы просто говорим, что у тела изменилась скорость под воздействием силы. Следовательно, силу можно рассматривать как причину изменения скорости движения.

В физике силой называют физическую величину, характеризующую изменение скорости тела.

Во всех наших примерах мы воздействовали на мяч с определенной силой, и при этом менялась его скорость.

Признаки действия силы на тело

Сила – это векторная величина, характеризующая действие тел друг на друга, то есть являющаяся мерой этого действия.

Известны четыре признака действия на тело силы:

Признак 1 - у тела может измениться значение скорости
(Все мы любим боулинг. Толкая руками шар, мы можем привести его в движение. Скорость шара меняется под действием руки человека. ИЛИ когда мы пинаем футбольный мяч)

Признак 2 - У тела может измениться направление движения

(Это когда мяч врезался в штангу ИЛИ изменяем направления летящего шарика ракеткой или другим предметом)

Признак 3 - у тела может произойти изменение размеров тела

(Это надувание надувного матраса или воздушного шарика)

Признак 4 - У тела может произойти изменение формы тела.

(Мы можем сжать ластик в руках или мнем баскетбольный мяч при игре или жмем руку)

Если есть хотя бы один из этих признаков, то говорят: “На тело действует некоторая сила”.

Сила, действующая на тело, может не только изменить скорость всего тела, но и отдельных его частей. Обратите внимание, когда мы мнем баскетбольный мяч руками, то скорость изменяется не у всего тела, а только у некоторых его частей. Например, мы сжимаем мяч пальцами, и только часть его частиц начинает двигаться. Это называется – деформация тела.

Деформация – изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга.

Деформацией называется любое изменение формы и размера тела. Еще один пример деформации – Батут, прикрепленный к опорам, прогибается, если на него встает человек.

Направление и единица измерения силы

Сила – физическая величина, которую можно измерить..

Известно. что сила является причиной изменения скорости тела. То есть, мы можем измерить, как сильно мы пнули мяч или толкнули шар в боулинге.Однако, сила имеет еще и направление, потому что мяч мы можем пнуть абсолютно в любую сторону также как и толкнуть шар, и от нас зависит, куда он полетит или покатится.

То есть сила – это величина векторная.

Обозначается в физике буквой F со стрелочкой над ней.

За единицу силы, принята сила, которая за время 1с изменяет скорость тела массой 1 кг на 1 м/с.

В честь английского физика Ньютона эта единица названа ньютоном .

Единица измерения силы – Ньютон, обозначается [H]

Часто применяют и другие единицы - килоньютоны(кН), миллиньютоны (мН):

1Н = 0,001 кН.

Сила, как и скорость, является векторной величиной. Она характеризуется не только числовым значением, но и направлением.

На чертеже силу изображают в виде отрезка прямой со стрелкой на конце.

Начало отрезка - точка А есть точка приложения силы. Длина отрезка условно обозначает в определенном масштабе модуль силы.

Итак, можно сказать, что результат действия силы на тело зависит от ее модуля, направления и точки приложения.

Сила притяжения земли


Все мы были на футболе и наблюдали за полетами футбольного мяча. Можно сделать одно наблюдение: как бы сильно не пинал мяч футболист, рано или поздно мяч оказывается на Земле.

Как бы мы не радовались победе нашей команды и подпрыгивали высоко-высоко, все равно приземлялись обратно.Любой предмет, будучи поднятым над поверхностью, стремится к Земле.

То есть, мы приходим к выводу, что есть какая-то неизменная сила, которая притягивает все предметы к Земле. Почему же это происходит? Как называется это явление?

Вот ответ на эти вопросы - На эти тела действует сила - сила притяжения к Земле. Из-за притяжения к Земле падают тела, поднятые над Землей, а потом опущенные.

Сила вытаскивания ноги с зыбучих песков со скоростью 0,1 м/с

равна силе поднятия легкового автомобиля.

Интересный факт: зыбучие пески – это ньютоновская жидкость,

которая не может поглотить человека полностью.

Поэтому увязшие в песках люди умирают от обезвоживания,

солнечного облучения или по другим причинам. .

Сила тяжести и сила тяготения

Сила притяжения к Земле называется силой тяжести. Сила тяжести действует на все тела, находящиеся на поверхности Земли. Но не только тела притягиваются к Земле – они сами притягивают к себе Землю. Как по расписанию, по два раза за каждые сутки поднимаются огромные волны на морях и океанах – это можно наблюдать на берегу в виде приливов и отливов. За счет чего? За счет того, что луна действует на Землю. Это взаимодействие. Впервые его описал английский физик Исаак Ньютон. Он утверждал, что все тела во Вселенной притягиваются друг к другу. И.Ньютон установил, «что чем больше массы взаимодействующих тел, тем сила, с которой они взаимодействуют, будет больше. Силы притяжения между телами уменьшаются, если увеличивается расстояние между ними». Вот это явление и называется силой всемирного тяготения.

Притяжение всех тел Вселенной друг к другу называется всемирным тяготением.

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

1. Какой буквой обозначается сила тяжести и в каких единицах измеряется в Си? 2. Какой буквой обозначается вес тела и в каких единицах в Си измеряется? 3. Какой буквой обозначается плотность и в каких единицах в Си измеряется? 4. Запишите формулу для вычисления силы тяжести. 5. В каких единицах в Си измеряется масса тела? 6. Формула для вычисления веса тела? 7. Какая сила называется силой тяжести? 8. Что такое деформация? 9. В каких единицах в Си измеряется объём тела и какой буквой обозначается? 10. Что называется весом тела? 11. Что является мерой взаимодействия тел? 12. Чему равно ускорение свободного падения? 13. Запишите формулу для вычисления силы упругости? 14. Каким прибором измеряется сила?


Ответы: 1)Fтяж. {Н} 2)P {Н} 3)p {кг/м 3} 4)Fтяж. =gm 5){кг} 6)P=gm 7)Сила с которой Земля притягивает к себе тело. 8)Изменение формы и размера тела. 9)V{м 3} 10)Сила, с которой тело в следствии притяжения к Земле действует на опору или подвес. 11)Сила 12)g=9.8Н/кг=10H/кг 13)Fупр.=K(l-l 0) 14)Динамометр За 14(+) - 3 балла За 12(+) - 2 балла За 10(+) - 1 балл Меньше 10(+) - 0 баллов






Баба с возу – кобыле легче; Не подмажешь – не поедешь; Пошло дело как по маслу; Угря в руках не удержишь; Лыжи скользят по погоде; Ржавый плуг только на пахоте очищается; Что кругло – легко катится; Колодезная верёвка сруб перетирает; Коси, коса, пока роса, роса долой – и мы домой.


1) R=20H+80H=100H R=80H-20H=60H Ответ:100Н; 60H. 2)Дано: Решение: F 1 =1000H R=F 1 - F 2 R=1000H – 700H=300H F 2 =700H Ответ:R=300H R-? 3)Дано: СИ: Решение: m=500 г. 0,5 кг Fтяж.=gm Fтяж=10Н/кг*0,5 кг=5H g=10H/кг Н/кг Fтяж-? Н Ответ:Fтяж=5Н. 4)Дано: СИ Решение: Р=600Н Н m=P/g m=600H/10H/кг=60 кг g=10H/кг H/кг Ответ:m=60 кг m-? кг 5)Дано: СИ Решение: V=20 л 0,02 м 3 P=mg m=800 кг/м 3*0,02 м 3=16 кг p=800 кг/м 3 кг/м 3 m=pV P=16 кг*10Н/кг=160Н. g=10H/кг H/кг Ответ:P=160H P-? H

Исследуя нормальное ускорение, которое возникает при движении Луны вокруг Земли, И. Ньютон пришел к выводу о том, что все тела в природе притягиваются друг к другу с некоторой силой, названной силой тяготения. При этом ускорение, которое вызывается действием данной силы обратно пропорционально квадрату расстояния между рассматриваемыми, воздействующими друг на друга телами.

Допустим, что два точечных тела, имеющих массы $m_1\ и\ m_2$ находятся на расстоянии $r$ друг от друга. Эти тела взаимодействуют с силами:

В соответствии с третьим законом Ньютона, модули сил равны:

Из сказанного выше об ускорении и на основании (2) получим:

\[\frac{m_1K_1}{r^2}=\frac{m_2K_2}{r^2}\left(3\right).\]

Формула (3) будет справедлива, если $K_1$=$\gamma m_2$, а $K_2$=$\gamma m_1$, где $\gamma $ некоторая постоянная. Тогда:

где $\gamma =6,67\cdot {10}^{-11}\frac{Н\cdot м^2}{{кг}^2}$ - гравитационная постоянная.

Формулировка закона всемирного тяготения

Определение

Сила притяжения между двумя материальными точками прямо пропорциональна произведению масс этих точек и обратно пропорциональна квадрату расстояния между ними:

Строго говоря, формулу (4) можно использовать для вычисления силы тяготения между однородным шарами с массами $m_1{\ и\ m}_2$, считая, что $r$ расстояние между центрами шаров.

Для того чтобы найти силы тяготения, которые действуют на одно тело со стороны другого тела, при этом тела точечными считать нельзя, поступают следующим образом. Оба тела теоретически делят на элементы, которые можно приять за точечные массы. Находят силы тяготения, которые действуют на один выбранный элемент первого тела со стороны всех элементов другого тела, получают силу, которая действует на рассматриваемую точку первого тела. Далее операцию повторяют для каждой точки первого тела. Полученные силы складывают с учетом их направлений. В результате получается сила тяготения, с которой второе тело действует на первое. Такая задача является весьма сложной.

Сила тяжести

Определение

Сила тяжести (сила притяжения к Земле) является частным случаем появления силы всемирного тяготения. Обозначим силу тяжести как $F_t$. В соответствии с законом всемирного тяготения эта сила равна:

где $m$ - масса тела, притягиваемого к Земле; $M$ - масса Земли; $R$ - радиус Земли; $h$ - высота тела над поверхностью Земли.

Сила тяжести направлена к Центру Земли. В задачах, если размер Земли много больше, чем рассматриваемые тела, считают, что сила тяжести направлена вертикально вниз.

Сила тяжести сообщает телам, находящимся около поверхности Земли ускорение, которое называют ускорением свободного падения, обозначают его как $\overline{g}$. По второму закону Ньютона имеем:

\[\overline{g}=\frac{{\overline{F}}_t}{m}\left(6\right).\]

Учитывая выражение (5), имеем:

\[\left|\overline{g}\right|=\gamma \frac{M}{{\left(R+h\right)}^2}\left(7\right).\]

Непосредственно на поверхности Земли (при $h=0$) величина ускорения свободного падения равна:

величина ускорения свободного падения, вычисленная из (8) приблизительно равна $g\approx 9,8\ \frac{м}{с^2}.$ Следует знать, что даже у поверхности Земли модуль ускорения свободного падения не везде одинаков, так как Земля не является идеальным шаром, и она вращается вокруг своей оси и движется по криволинейной траектории вокруг Солнца.

Используя второй закон Ньютона и выражение (8) силу тяжести записывают как:

\[{\overline{F}}_t=m\overline{g}\left(9\right).\]

Примеры задач с решением

Пример 1

Задание. Какова сила тяготения двух тел, массы которых равны ${m=10}^4\ кг,$ если расстояние между их центрами составляет $r=100$м? Тела считайте однородными шарами.

Решение. Так как по условию задачи масса тел обладает сферической симметрией (однородные шары), то для вычисления силы тяготения можно воспользоваться формулой:

Учитывая равенство масс тел выражение (1.1) преобразуем к виду:

Вычисли искомую силу:

Ответ. $F=6,67\cdot {10}^{-7}$Н

Пример 2

Задание. Некоторое тело, находящееся на полюсе Земли, бросили вертикально вверх со скоростью $v_0$. На какую высоту ($h$) поднимется это тело? Считайте, что известны радиус Земли ($R$) и ускорение свободного падения ($g$). Сопротивление воздуха не учитывайте.

Решение. Решать задачу будем на основе закона сохранения механической энергии, так как сил сопротивления нет, система консервативна. Тело в момент броска имеет кинетическую энергию:

Потенциальная энергия взаимодействия тела и Земли на поверхности последней равна:

где $M$ - масса Земли. Когда тело достигает точки максимального подъема, оно имеет только потенциальную энергию:

Из закона сохранения энергии имеем:

Принимая во внимание, что

Ответ. $h=\frac{R}{\frac{2gR}{v^2_0}-1}$

gastroguru © 2017